
EECS 213 Introduction to Computer Systems Dinda, Spring 2017

 Page 1 of 3

Homework 3

Memory and Cache

1. (This is a repeat of the additional question given for HW2 in preparation for the midterm).

Reorder the fields in this structure so that the structure will (a) consume the most space and
(b) consume the least space on an IA32 machine on Linux.

struct foo {
 double a;
 char b;
 short *c;
 char *d;
 long e;
 int f;
 short g;

 };

2. Consider a processor that uses 20-bit addresses and can address 220=1M bytes of memory.

Suppose that it has one level of cache. As in Figure 6.25 of your textbook, the address is split
into a t bit tag, an s bit set index, and a b bit block offset. The cache consists of 8192 bytes,
with a block size of 128 bytes. Answer each of the following for direct-mapped, 4-way set
associative, and fully associative versions of the cache.

a. How many cache lines are there?
b. What is b?
c. What is s?
d. What is t?

3. For the cache in problem 3, draw the cache given that it is structured as follows. You can
elide replicated components, but annotate your drawing with how many components there
are.

a. Direct-mapped
b. 2-way set associative
c. Fully associative

EECS 213 Introduction to Computer Systems Dinda, Spring 2017

 Page 2 of 3

4. Our company wants to optimize the performance of the following code

void vector_add(int n, int *a, int *b, int *c) {
 int i;
 for (i=0;i<n;i++) {
 c[i]=a[i]+b[i];
 }
}

run on the same processor and cache as described in problem 3. The cache is write-back,
write-allocate, and has an LRU replacement policy. Integers are 32 bits.

a. Suppose the cache is direct mapped. Let n=4096, a=0x0a000, b=0x0c000,
c=0x0e000. On average, how many times per loop iteration will you load a cache
block from main memory? How many times per loop iteration will you flush a cache
block back to main memory?

b. While we’re all fired up to buy ultra-cool mega-associative cache hardware (which
comes only in machined aluminum), a smart alec programmer claims that we can get
the same effect by having a=0x0a000, b=0x0c080, and c=0x0e100. Is she right?
Why or why not?

5. You should now be coming to realize just how important leveraging locality of access is for

performance. Modern processors take advantage of this locality in hardware using many
mechanisms, but one important one is called prefetching. The prefetch unit of a CPU will
monitor memory accesses and try to predict accesses that might follow soon after. That way,
when the CPU issues a load or store to the next address, the cache will have already been
populated with it, and it will not need to wait for an expensive access to main memory to
complete. However, hardware prefetch units have limited foresight, and sometimes it may be
better for the programmer to provide some hints as to what memory will be accessed in the
near future. Consider the following piece of code that simply sums up a large 2D array.

#define ROWS (1024*1024*16)
#define COLS 16

int 2darray_sum() {
 int sum = 0;
 int i, j;

int * a = malloc(sizeof(int)*ROWS*COLS);
/* skip array initialization code */
for (i = 0; i < ROWS; i++) {

for (j = 0; j < COLS; j++) {
 sum += *(a+i*COLS+j);
 }

 _prefetch(a+(i+1)*COLS);
}
return sum;

 }

EECS 213 Introduction to Computer Systems Dinda, Spring 2017

 Page 3 of 3

This code loops through a 2D-array using pointer arithmetic and sums the elements. The
interesting thing we’ve added here is the call to _prefetch. _prefetch takes a memory
address and instructs the hardware to preload the cache with one line starting at that address. For
the following question, assume that our data cache size is 32KB and the block size is 64 bytes.

a. How big is the array that a points to? Will it fit in the cache?
b. Why did we choose to prefetch at the address a+(i+1)*COLS and why did we

place it in the outer loop? Explain your reasoning. (Hint: it’s no coincidence that
COLS is 16)

c. Running the above code on our class machine with the prefetch produces a speedup
over the case without the prefetch by about 56%. Suppose we make this same
comparison, but we make it for various array sizes. When would you expect the
prefetch to help us more, with much smaller arrays or with larger arrays? Why?

