
EECS 213 Introduction to Computer Systems Spring 2017

 Page 1 of 6

Introduction to Computer Systems

Syllabus
Web Page
 http://pdinda.org/ics

 See the web page for more information.

 Class discussions are on Piazza – we will enroll you.

We will make only minimal use of Canvas (grade reports, mostly)

Instructor
 Peter A. Dinda

Tech L463
 pdinda@northwestern.edu

Teaching Assistants
Conor Hetland
Ford 2-211
ConorHetland2015@u.northwestern.edu

Georgios Tziantzioulis
Tech L466
GeorgiosTziantzioulis2011@u.northwestern.edu

David Samuels
DavidSamuels2018@u.northwestern.edu

William Wallace
WilliamWallace2018@u.northwestern.edu

Murphy Angelo
MurphyAngelo2019@u.northwestern.edu

We will decide on office hours in the first week of class based on
student feedback.

EECS 213 Introduction to Computer Systems Spring 2017

 Page 2 of 6

Location and Time
 Sessions: Tuesdays and Thursdays, 2-3:20pm, Tech L251
 Special Sessions: TBA

Prerequisites
 Required EECS 211 or equivalent
 Required Experience with C or C++
 Required Some experience with programming in a Unix

environment (e.g., as in EECS 211)

EECS 213 is a required core course in the Computer Science curriculum in both
McCormick and Weinberg. It is also a required course for CS minors in both
schools. 213 can also be taken for credit within the Computer Engineering
curriculum. 300-level systems courses generally have 213 as a prerequisite.

Textbook
Randal E. Bryant and David R. O’Hallaron, Computer Systems: A Programmer’s
Perspective, Third Edition, Prentice Hall, 2015, (ISBN-13: 978-
0134092669, ISBN-10: 013409266X) (Required - Textbook)

• Details on http://csapp.cs.cmu.edu
• Make sure you have the third edition of the book. This edition is the

first to focus on the 64 bit operation of the machine, which we will make
extensive use of in this course, unlike previous instances of EECS 213.

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language,
Second Edition, Prentice Hall, 1988 (ISBN 0-131-10370-9) (Reference)

• This remains the definitive book on C by its creators

Richard Stevens and Stephen Rago, Advanced Programming in the Unix
Environment, Third Edition, Addison-Wesley, 2013 (ISBN-10: 0321637739 |
ISBN-13: 978-0321637734) (Reference)

• This describes how to think like a Unix systems programmer
• The older editions, even the first edition, are very good

Objectives, framework, philosophy, and caveats
This course has four purposes. First, you will learn about the hierarchy of
abstractions and implementations that comprise a modern computer system. This
will provide a conceptual framework that you can then flesh out with courses such
as compilers, operating systems, networks, and others. The second purpose is to
demystify the machine and the tools that we use to program it. This includes
telling you the little details that students usually have to learn by osmosis. In

EECS 213 Introduction to Computer Systems Spring 2017

 Page 3 of 6

combination, these two purposes will give you the background to understand
many different computer systems. The third purpose is to bring you up to speed in
doing systems programming in a low-level language in the Unix environment.
The final purpose is to prepare you for upper-level courses in systems.

This is a learn-by-doing kind of class. You will write pieces of code, compile
them, debug them, disassemble them, measure their performance, optimize them,
etc.

The specific computer architecture we will focus on in this class is the 64 bit
Intel/AMD x86 architecture, which is used in virtually all supercomputers, clouds,
clusters, servers, desktops, and laptop/notebook computers today.1 The specific
operating system we will use is Linux, which is used in most supercomputer,
cloud, cluster, and server environments, and is the operating system of Android
smartphones and ChromeBooks. The specific programming toolchain we will use
is GCC (and GDB), which is an extremely widely used core toolchain on pretty
much all platforms, except Windows. The ideas and concepts embodied in this
architecture, operating system, and programming toolchain are commonly found
in others.

This course is ideally taken after 211 early in your academic career.

Class Sessions / Question Requirement / Attendance Requirement
It is important that you complete the reading assigned for each officially
scheduled class session before that session (the reading for the first session is an
exception). This is because, to the greatest extent possible, instead of flat out
lecturing to you, I want to spend class time asking and answering questions about
the readings, homework, and labs. This is a “flipped classroom” model where
the readings replace the traditional lecture.

To better help student engagement with the reading materials drive class time,
you will need to contribute at least one question online by noon of the day of
the class session. Your question should derive from the reading materials of that
day, as shown later in this document. You are also welcome to ask additional
questions relating to reading, homework, labs, etc. I strongly encourage you to
ask questions in other venues as well, including Piazza (which allows complete
anonymity), and of course in person.

To encourage you to do your reading, homework, and labs, as well as to broaden
participation, I will randomly choose students to call on. If I call on you, I
expect you to be there, and to ask a question, answer a question, or otherwise
contribute to keeping the discussion going. That does not mean I expect the right

1 The 64 bit x86 architecture is also called “x86_64” and just “x64”. You will also have a chance to look at
the Xeon Phi, an important derivative of the x64. We may also look briefly at the ARM architecture used
in iPhones/iPads and many Android devices. If this doesn’t make sense to you yet, don’t worry about it.

EECS 213 Introduction to Computer Systems Spring 2017

 Page 4 of 6

answer, the right question, or the right comment – I just want a good faith effort
that reflects your understanding of the reading and of the discussion so far. What
I’m asking of you is: Read. Attend. Talk.

Discussion and Getting Help
In addition to class sessions and office hours, the TAs will also hold occasional
special topics sessions. Conor, George, David, Will, and Murphy have all been
in your shoes, having taken EECS 213 here at Northwestern, as well as more
advanced courses that build on it. Conor and George have both TAed 213
before.

We will use an online discussion group on Piazza as well. The intent is to have
multiple venues for discussion with different styles so that all students feel
comfortable participating. If you have a question, answer, or comment, please
put it forward. If you’re too scared, put it forward anonymously on Piazza.

Resources
You will have Linux accounts on the Wilkinson and Tlab machines, and it should
be possible to do a lot of your work on them, or other 64 bit Linux machines.
However, you will also have access to considerably more powerful, and
interesting server machines that can support many users simultaneously, and we
expect most students will use those servers. We will test your labs on those
machines.

For students who find the topics of this course particularly compelling, we can
give you access to even more compelling machines.

Labs
We will have four programming labs. Their goal is to make you apply the
concepts you’ve learned and to gain familiarity with Unix tools that can help you
apply them. Labs should be done in groups of two.

Homework
We will give you several homework assignments, along with solutions. These
will not be graded, but we encourage you to do them since they are good for
understanding the concepts in the book, and as preparation for the exams.

Exams
There will be a midterm exam and a final exam. The final exam will not be
cumulative.

EECS 213 Introduction to Computer Systems Spring 2017

 Page 5 of 6

Grading
50 % Programming labs (12.5% per lab)
10 % Questions (online and during class)
20 % Midterm (covers first half of the course)
20 % Final (covers second half of the course)

For some of the programming labs, extra credit is possible.

For the “Questions” portion of the grade: Contribute one clear question based on
the assigned reading before each class session. Be there and make a good attempt
when I randomly call on you. If you do these two things, you will be fine.

Your score in the course is the weighted average of your scores on each of the
components. You can view all currently graded material, and your score, at any
time on Canvas. Final grades are based on the course score (the weighted
average), with the basic model being that the 90s are A territory, 80s are B
territory, and so on. This model will be adapted toward lower thresholds if
necessary based on overall class performance. That is, this is NOT a curved
class.

The instructor ultimately assign scores and grades in consultation with the TAs.
If you have a problem with a score on an assignment/exam or your grade, you are
welcome to bring it up with him or the TAs, but only the instructor is empowered
to change grades.

Late Policy
For each calendar day after the due date for a lab, 10% is lost. After 1 day, the
maximum score is 90%, after 2 days, 80%, etc, for a maximum of 10 days.

Cheating
Since cheaters are mostly hurting themselves, we do not have the time or energy
to hunt them down. We much prefer that you act collegially and help each other
to learn the material and to solve development problems than to have you live in
fear of our wrath and not talk to each other. Nonetheless, if we detect blatant
cheating, we will deal with the cheaters as per Northwestern guidelines.

Schedule

Lecture Date Topics Readings Homework/Labs
1 3/28 T Mechanics, Introduction,

overview of abstractions
Chapter 1 Data lab out

2 3/30 Th Physics, transistors,
photolithography, Moore’s

2, 2.1,
handout

HW1 out

EECS 213 Introduction to Computer Systems Spring 2017

 Page 6 of 6

Law, bits, bytes, logic, cores,
and multicores

3/31 is the last day for adding courses or changing sections
3 4/4 T Integers and integer math 2.2-2.3
4 4/6 Th Floating point and FP math 2.4-2.5
5 4/11 T The Machine Model –

instruction set architecture,
microarchitecture, and basic
instructions

3, 3.1-3.5,
5.7

HW 2 out

6 4/13 Th Control flow

3.6 Data lab in
Bomb lab out

7 4/18 T Procedures 3.7
8 4/20 Th Data 3.8-3.10
9 4/25 T Floating point 3.11-3.12 HW 3 out
10 4/27 Th Memory and cache 6, 6.1-6.4
Midterm Exam Review: Wed, 4/26, 6pm
Midterm Exam: Thurs, 4/27, 6pm.
11 5/2 T Cache performance 6.5-6.7 Bomb lab in,

Attack lab out
12 5/4 Th Cache performance / catchup 6.5-6.7
5/5 is the last day to drop a class
13 5/9 T Linking Chapter 7
14 5/11 Th Concurrency and Parallelism Chapter 12

(focus on
12.3+),
handouts

15 5/16 T Exceptional control flow 8,8.1-8.4 Attack lab in,
SETI lab out

16 5/18 Th Exceptional control flow 8.5-8.8 HW 4 out
17 5/23 T Virtual memory

Memory system
9, 9.1-9.8

18 5/25 Th Memory allocation 9.9-9.12
19 5/30 T Input and Output Chapter 10
20 6/1 Th Network programming Chapter 11

Handout
SETI lab in

Finals week – Exam is Friday, June 9, 9 AM

Note that in the latter part of the course, we will cover Chapters 10-12 at a very high level. I want you to
read these chapters, but I will not cover them in their entirety in class.

We will skip Chapter 4 (Processor Architecture), 5 (Performance Optimization), and others. Chapter 4 is
worth reading if you’re interested in how a simple processor with an Intel-like instruction set is
implemented. Chapter 5 is all about understanding how to make programs run faster.

