
CS 340 The Minet Socket Interface Dinda

 Page 1 of 4

The Minet Socket Interface

The Minet socket interface provides a single interface for application programs to talk to
the Minet network stack or to the kernel’s network stack. The interface looks like a
simplified version of Berkeley socket interface. When communicating with the kernel
stack, it is merely a thin veneer on top of that interface. This permits you to write a
program using Minet that you can test on top of the kernel stack to check that it works
before trying to run it on top of the Minet stack. It also means that you can use the man
pages for the non-Minet versions of the API functions to get more information. For
example, to learn more about minet_socket(), you can check the man page for socket.

Compiling and Linking
You can fetch the current minnet socket interface include (minet_socket.h) and library
(libminet_socket.a) files from http://www.cs.northwestern.edu/~pdinda/minet. These are
also a part of the regular distribution. The following assumes that they are placed in the
same directory as your code. To compile, you must include the minet_socket header file
in your source file as follows:

 #include “minet_socket.h”

Furthermore, you must tell gcc or g++ where to find the header file when you compile:

 gcc –Wall –c –I. myprogram.c –o myprogram.o

When you link, you must tell where gcc where to find the minet library and to include it:

 gcc –L. myprogram.o –lminet_socket –o myprogram

Return codes and errors
Each of the minet_ functions returns an integer. A negative return code denotes an error.
You can retrieve the exact error, or print an informative error message using the
following functions:

int minet_error();
int minet_perror(char *s);

Initializing and Deinitializing the Minet Socket Interface
Before you use the minet socket interface, you must initialize it. You can initialize it to
run on top of the kernel stack or the Minet stack:

int minet_init(enum {MINET_KERNEL, MINET_USER} type);

When you are done using the Minet socket interface, you should deinitialize it:

 int minet_deinit();

CS 340 The Minet Socket Interface Dinda

 Page 2 of 4

Creating A Socket
To create a socket, you can use a basic call that can only create PF_INET (internet)
sockets:

int minet_socket(int type);

type must be either SOCK_STREAM (TCP) or SOCK_DGRAM (UDP).

Binding A Socket
You can bind a socket to an IP address (AF_INET) and port using the following call:

int minet_bind(int sockfd,
 struct sockaddr_in *myaddr);

Listening On A Socket
You can listen on a socket using the following call:

int minet_listen(int sockfd,
 int backlog);

Accepting A Connection
You can accept a connection with the following call:

int minet_accept(int sockfd,
 struct sockaddr_in *addr);

Connecting To A Remote Socket
To connect to a remote socket, you can use the following call:

int minet_connect(int sockfd,
 struct sockaddr_in *addr);

Sending And Receiving
To send and receive messages, you can use read and write calls:

int minet_read(int fd,
 char *buf,
 int len);
int minet_write(int fd,
 char *buf,
 int len);

These calls return the number of bytes that were actually read or written. They will only
work for sockets that are connected. If you want to send data on an unconnected socket
(A UDP socket, for example), you should use the following calls:

CS 340 The Minet Socket Interface Dinda

 Page 3 of 4

int minet_sendto(int fd,
 char *buf,
 int len,
 struct sockaddr_in *to);

 int minet_recvfrom(int fd,
 char *buf,
 int len,
 struct sockaddr_in *from)

Closing A Socket
To close a socket use the following call:

int minet_close(int sockfd);

Select
The select call in the Minet socket interface is complicated by the fact that one might
want to simultaneously select on both Minet sockets and on other, non-Minet file
descriptors. For this reason, there are two Minet select calls.

The Minet select calls use fd_sets just like the Unix select call. Thus the following
functions will work on Minet sockets:

FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

The basic Minet select call is used if you need to select on only Minet sockets:

int minet_select(int minet_maxfd,
 fd_set *minet_read_fds,
 fd_set *minet_write_fds,
 fd_set *minet_except_fds,
 struct timeval *timeout);

If you want to select on both Minet sockets and non-Minet file descriptors, you can use
the extended version of the call. Essentially, you pass in separate fd_sets for the non-
Minet file descriptors:

int minet_select_ex(int minet_maxfd
 fd_set *minet_read_fds,
 fd_set *minet_write_fds,
 fd_set *minet_except_fds,
 int unix_maxfd,
 fd_set *unix_read_fds,
 fd_set *unix_write_fds,
 fd_set *unix_except_fds,
 struct timeval *timeout);

CS 340 The Minet Socket Interface Dinda

 Page 4 of 4

Poll
Just like select, the Minet poll function comes in two flavors, one for polling Minet
sockets:

int minet_poll(struct pollfd *minet_fds,
 int num_minet_fds,
 int timeout);

and one for polling both Minet sockets and non-Minet file descriptors:

int minet_poll_ex(struct pollfd *minet_fds,
 int num_minet_fds,
 struct pollfd *unix_fds,
 int num_unix_fds,
 int timeout);

Utility Functions
You can set whether a Minet socket will be blocking or non-blocking using the following
functions:

int minet_set_nonblocking(int sockfd);
int minet_set_blocking(int sockfd);

You can query whether a socket is ready for reading or writing using the following
functions:

int minet_can_write_now(int sockfd);
int minet_can_read_now(int sockfd);

