CS 395-0, Section 22 The Minet Socket Interface Dinda, Fall 2000

The Minet Socket Interface

The Minet socket interface provides a single interface for application programs to talk to
the Minet network stack or to the kernel’s network stack. The interface looks like a
simplified version of Berkeley socket interface. When communicating with the kernel
stack, it is merely athin veneer on top of that interface. This permits you to write a
program using Minet that you can test on top of the kernel stack to check that it works
before trying to run it on top of the Minet stack. It also meansthat you can use the man
pages for the non-Minet versions of the API functions to get more information. For
example, to learn more about ni net _socket (), you can check the man page for socket .

Compiling and Linking

Y ou can fetch the current minnet socket interface include (minet_socket.h) and library
(libminet_socket.a) files from http://www.cs.northwestern.edu/~pdinda/minet. The
following assumes that they are placed in the same directory as your code. To compile,
you must include the minet_socket header file in your source file as follows:

#i ncl ude “m net_socket.h”

Furthermore, you must tell gcc or g++ where to find the header file when you compile:
gcc —c —l. nyprogramc —0 myprogram o

When you link, you must tell where gcc where to find the minet library and to include it:

gcc —L. nyprogram o —l m net _socket —o nyprogram

Return codes and errors

Each of the minet_ functions returns an integer. A negative return code denotes an error.
Y ou can retrieve the exact error, or print an informative error message using the
following functions:

int mnet _error();
int mnet_perror(char *s);

Initializing and Deinitializing the Minet Socket Interface

Before you use the minet socket interface, you must initialize it. You can initidize it to
run on top of the kernel stack or the Minet stack:

int mnet_init(enum {M NET_KERNEL, M NET_USER} type);
When you are done using the Minet socket interface, you should deinitialize it:

int mnet _deinit();

Page 1 of 4



CS 395-0, Section 22 The Minet Socket Interface Dinda, Fall 2000

Creating A Socket
To create a socket, you can use abasic cal that can only create PF_INET (internet)
sockets:

int mnet_socket(int type);

type must be either SOCK_STREAM (TCP) or SOCK_DGRAM (UDP).

Binding A Socket
Y ou can bind a socket to an IP address (AF_INET) and port using the following call:

i nt mnet_bind(int sockfd,
struct sockaddr in *myaddr);

Listening On A Socket
Y ou can listen on a socket using the following call:

int mnet_listen(int sockfd,
i nt backl og);

Accepting A Connection
Y ou can accept a connection with the following call:

int mnet_accept (int sockfd,
struct sockaddr _in *addr);

Connecting To A Remote Socket
To connect to aremote socket, you can use the following call:

int m net_connect (int sockfd,
struct sockaddr_in *addr);

Sending And Receiving
To send and receive messages, you can use read and write calls:

int mnet_read(int fd,
char *buf,
int len);

int mnet_wite(int fd,
char *buf,
int len);

Page 2 of 4



CS 395-0, Section 22 The Minet Socket Interface Dinda, Fall 2000

These calls return the number of bytes that were actualy read or written. They will only
work for sockets that are connected. If you want to send data on an unconnected socket
(A UDP socket, for example), you should use the following calls:

int mnet_sendto(int fd,
char *puf,
i nt | en,

struct sockaddr _in *to);

int mnet_recvfron(int fd,
char *puf ,
i nt | en,

struct sockaddr _in *from

Closing A Socket
To close a socket use the following call:

int minet close(int sockfd);

Select

The select call in the Minet socket interface is complicated by the fact that one might
want to simultaneously select on both Minet sockets and on other, non-Minet file
descriptors. For thisreason, there are two Minet select calls.

The Minet select callsusef d_set sjust like the Unix select call. Thus the following
functions will work on Minet sockets:

FD CLR(int fd, fd_set *set);
FD | SSET(int fd, fd_set *set);
FD SET(int fd, fd_set *set);
FD ZERQ(fd_set *set);

The basic Minet select call is used if you need to select on only Minet sockets:

int mnet_select(int m net _maxf d,
fd_set *m net _read_fds,
fd_set *mnet_wite_fds,
fd_set *m net _except _fds,

struct tineval *timeout);

If you want to select on both Minet sockets and non-Minet file descriptors, you can use
the extended version of the call. Essentially, you passin separate f d_set s for the non-
Minet file descriptors:

int mnet_select_ex(int nm net _maxfd
fd_set *m net _read_fds,
fd_set *mnet_wite fds,
fd_set *m net _except _fds,
i nt uni x_maxfd,
fd_set *uni x_read_fds,

Page 3 of 4



CS 395-0, Section 22 The Minet Socket Interface Dinda, Fall 2000

fd _set *uni x_write fds,
fd _set *uni x_except _fds,
struct tineval *tinmeout);

Poll

Just like select, the Minet poll function comes in two flavors, one for polling Minet
sockets:
int mnet_poll(struct pollfd *minet_fds,
i nt num m net fds,
i nt timeout);

and one for polling both Minet sockets and non-Minet file descriptors:

int mnet_poll_ex(struct pollfd *mninet_fds,

i nt num m net fds,
struct pollfd *unix_fds,

i nt num uni x_fds,
i nt timeout);

Utility Functions

Y ou can set whether a Minet socket will be blocking or non-blocking using the following
functions:

int mnet_set _nonbl ocki ng(int sockfd);
int mnet_set blocking(int sockfd);

Y ou can query whether a socket is ready for reading or writing using the following
functions:

int mnet _can_ wite_now(int sockfd);
int mnet_can_read_nowint sockfd);

Page 4 of 4



