
CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 1 of 15 

The Minet TCP/IP Stack 

Introduction 
The Minet TCP/IP Stack is intended to support undergraduate and graduate courses in 
computer networking that are based on a “students learn by building something real”  
pedagogical model.  The specific goals of Minet are the following: 
 

• Minet enables students to implement a compatible TCP/IP stack that directly 
controls the Ethernet device. 

• Minet lets the instructor control the degree of access students have to the Ethernet 
device  

• Minet enables students to write low-level networking code while still working at 
the user level with a familiar development environment. 

• Minet does not require students to possess knowledge of process or thread control 
or synchronization. 

• Minet works on Linux and should be easily portable to other Unix-like operating 
systems.   

• Minet lets the instructor control the difficulty of an assignment by selective 
release of C++ classes and Minet modules. 

 
The Minet stack consists of a collection of modules that communicate with each other 
using, for the most part, fifos or named pipes.  Two special modules, which are run as 
root through the Unix suid mechanism, implement the injection and extraction of raw 
Ethernet packets.  The instructor can modify these modules as necessary to control the 
packets that students can see.  In addition, it is a good idea to use a switched Ethernet 
network to minimize resource conflicts. 

Minet Hardware and Software Requirements 
The following hardware is needed to use Minet: 
 

• Intel PC capable of running Linux (ideally at least two such PCs) 
• Ethernet card supported by Linux 
• Hub or switch (for more than one machine) 

 
The following software is needed to use Minet.  Other versions may work as well. 
 

• Red Hat Linux 6.2 (The default kernel will work.  If you build your own, be sure 
to include packet sockets and Berkeley packet filters) 

• GCC 2.95.2 19991024 release including STL 
• Gnu Make 3.78.1 
• libpcap 0.4-19 
• libnet 1.0.1-b 

 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 2 of 15 

 

reader writerwriter

device_driver
ethernet

ethernet_mux

ip_modulearp_module

ip_mux

other_module

tcp_moduleudp_module

sock_module

SIGUSR1

Socketpair (AF_UNIX)

Signal

libpcap libnet

Fifo Pair

R
aw

E
th

er
ne

tP
ac

ke
t

P
ac

ke
t

ARPRequestResponse

So
ck

R
eq

ue
st

R
es

po
ns

e

ipother_mod

libminet_socket

application

So
ck

L
ib

R
eq

ue
st

R
es

po
se

Ethernet Device
 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 3 of 15 

 

Description of the Minet Stack 
The facing page illustrates the standard Minet configuration as of the date of this writing.  
Minet consists of modules (the labeled boxes), which are separate executables.  These 
modules communicate using paired fifos (heavy bi-directional arrows).  The parts of the 
figure that are in gray are modules that have not yet been completed and are not 
necessary for basic TCP/IP functionality.   A dashed line within a module represents a 
division between a library and user code.  This description is divided into three pieces.  
First, we describe the data types that Minet provides.  Next, we describe the modules, 
which are implemented using these data types.  Finally, we describe the interfaces 
between these modules.   

Data Types 
Minet provides a number of data types to simplify development.  This section describes 
the most significant and often used of these.  Generally, Minet data types are 
“serializable”  – they support the methods Serialize and Unserialize, which simplify 
writing them onto a file descriptor or reading them from a file descriptor.   

Buffer and TaggedBuffer<T> 
The Buffer class provides the basic data buffering mechanism.  A TaggedBuffer is simply 
a Buffer with an associated tag of type T.  A buffer is based on an STL crope, which is a 
string class that is optimized for rapid and easy editing. 

EthernetConfig 
An EthernetConfig is used to initialize the virtual Ethernet device.  It consists of a device 
number, flags, and a pointer to the interrupt service routine that the virtual device will 
trap to. 

EthernetAddr 
This provides a convenient representation of and tools for manipulating 6 byte Ethernet 
addresses. 

RawEthernetPacket 
The RawEthernetPacket class is the basic message type for the lower levels of the stack.  
As the name indicates, it represents a raw Ethernet packet.  Like the other message 
classes in Minet, it provides serialization methods to make instances easy to 
communicate.  RawEthernetPacket::Serialize(const int fd) const writes the packet to a file 
descriptor, while RawEthernetPacket::Unserialize(const int fd ) reads the packet from a 
file descriptor. 

RawEthernetPacketBuffer 
This class implements a buffer (or queue) of RawEthernetPackets.  This is deprecated. 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 4 of 15 

Header and Trailer 
These classes implement packet headers and trailers.  They are TaggedBuffers, where the 
tag represents the type of the header or trailer.  Header types include: EthernetHeader, 
ARPHeader, IPHeader, UDPHeader, and TCPHeader.  The only Trailer type is 
EthernetTrailer.  Header and Trailer and their subclasses are carefully designed so that a 
general Header can be downcast to specific form of header.  For example, a Header can 
be cast to an IPHeader.  The representation of IPHeader (a TaggedBuffer) is identical to 
that of a Header, but it provides tools for conveniently manipulating the raw data of the 
header. 

EthernetHeader and EthernetTrailer 
These classes are convenient tools for manipulating Ethernet headers and trailers.   

Packet 
The Packet class is used to represent all packets except RawEthernetPackets.  A Packet 
consists of a list of packet Headers, a Buffer that represents the payload of the packet, and 
a list of packet Trailers.  The Packet class includes methods for extracting portions of the 
payload to create new headers and trailers.  Packets can easily be constructed from 
RawEthernetPackets, but the converse is not the case since a Packet may be much larger 
than a RawEthernetPacket.  However, it is possible to extract raw data from the headers, 
payload, and trailers of a Packet. 

PacketQueue 
This class implements a queue of Packets.  This is deprecated. 

ARPPacket 
The ARPPacket is a subclass of Packet that interprets the payload as an ARP packet.  It 
provides an example of how to build functionality on top of Packet through subclassing.  
It is important to note, however, that extend functionality in this manner.  Code may also 
operate on Packets directly, interpreting them based on what headers and trailers are 
available, cast as appropriate.      

ARPRequestResponse 
This class represents the request or response for a mapping of IP address to Ethernet 
address.  Generally, these are exchanged only between ip_module and arp_module. 

ARPCache 
This class maps from Ethernet addresses to IP addresses.b 

IPAddress 
The IPAddress class is a wrapper around a 32 bit Ipv4 address that provides convenient 
functionality. 

IPOptions 
The IPOptions class wraps the raw data of the options that may appear in an Ipv4 Header 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 5 of 15 

IPHeader 
An IPHeader provides convenient access to the fields of an IPv4 header, doing the 
necessary bit-twiddling behind the scenes.  Checksums are automatically recomputed as 
fields change.   

UDPHeader 
A UDPHeader wraps the raw data of a UDP header in a convenient abstraction.  It deals 
with the bit twiddling necessary to play with the fields of a UDPHeader. 

TCPOption 
This class contains the options fields of a TCP header. 

TCPHeader 
This class wraps the raw data of a TCP header in a convenient abstraction, making it easy 
to manipulate the fields of the header. 

Connection 
A Connection is a 5-tuple consisting of the source host and port, the destination host and 
port, and a protocol.  The Sock module uses Connections to identify particular flows of 
data to lower level modules.  Connections are used for this purpose even for connection-
less protocols such as UDP.  

SockRequestResponse 
This class represents requests and responses that flow both ways between sock_module 
and the modules immediately below it 

SockLibRequestResponse 
This class is used for communicating between sock_module and the libminet_socket.a 
stubs that the application uses.  For example, when the application makes a minet_read 
call, libminet_socket.a translates this into a SockLibRequestResponse and sends it to 
sock_module. 

Modules 
Minet consists of a collection of modules that rendezvous with each other and 
communicate at run time using fifos.  Modules are typically implemented using the 
facilities provided by the data types described above 

Fifo-based Communication model 
In order to prevent deadlock, a module must open the fifos it connects to in the following 
order.  First, for each module below it in the figure, from left to right, that it connects to, 
it should first open the fifo it will read from (the input fifo), and then the fifo it will write 
to (the output fifo).  Next, for each module above it in the figure, from left to right, that it 
connects to, it should first open the output fifo, and then open the input fifo.  Ip_module 
should treat arp_module as being above it. 
 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 6 of 15 

Each individual fifo supports messages of only one type.  Currently, the following types 
are available: RawEthernetPacket, Packet, ARPRequestResponse, SockRequestResponse, 
and SockLibRequestResponse.  Each message type supports serialization methods 
(Serialize/Unserialize) to make it easy to transfer messages across the fifo.  The next 
section describes these types in more detail along with other significant data types. 

Structure of a Select-based Module 
Minet does not constrain the implementation of a module – as long as an implementation 
meets its interface requirements, it is a valid implementation.  Nonetheless, the 
expectation is that most modules will be implemented as sequential (single thread) C++ 
programs based on the select call.  This approach has two advantages.  First, sequential 
modules are far easier to debug with standard tools such as gdb.  Second, the approach 
requires only a minimal grasp of operating system concepts.  The following pseudocode 
provides a framework for writing a select-based module. 
 

I ni t i al i ze st at e of  modul e 
Open t he f i f os of  l ower - l evel  modul es,  l ef t  t o r i ght ,  i nput  f i f o 
  f i r st ,  t hen out put  f i f o 
Open t he f i f os of  hi gher - l evel  modul e,  l ef t  t o r i ght ,  out put  f i f o 
  f i r st ,  t hen i nput  f i f o 
whi l e ( 1)  {   
 add al l  f i f os t o r eadl i st  
 sel ect ( r eadl i st )  
 f or  each f i f o wi t h dat a t o be r ead {  
  unser i al i ze appr opr i at e t ype f r om f i f o 
  updat e st at e appr opr i at el y 
  ser i al i ze appr opr i at e t ypes t o ot her  f i f os 
            as necessar y 
  per f or m comput at i on and si de- ef f ect s 
 }  
}  
 

A module may assume that when select indicates that a fifo is readable, an entire data 
type may be unserialized from the fifo without blocking.  In addition, a module may 
assume that serializing a data type to a fifo will not block if a select call indicates that it is 
ready for writing.  That is, serialization is all-or-nothing.  If you can serialize, you can 
serialize the whole data type. 

Virtual Ethernet Device: reader, writer, and the Ethernet Library 
The reader and writer modules extract and inject Ethernet packets from and to the 
network, respectively, and interface to the device_driver module using 
RawEthernetPackets.  The reader and writer modules are special in that they must run as 
root.  The typical way to do this is to provide binaries to the students that have their 
setuid bit set so that they are run as root regardless of who executes them.  
 
The Ethernet library spawns reader and writer.  Unlike the remainder of the modules, 
reader, writer, and the Ethernet library communicate using Unix domain socket pairs and 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 7 of 15 

signals. The three components form a “virtual Ethernet device” .  The virtual Ethernet 
device operates as a generic DMA block device.  It generates virtual interrupts when 
DMA operations complete and when new packets arrive.  These virtual interrupts are 
derived from signals that reader and writer send to the Ethernet library when new packets 
arrive or when packets have been sent.   The mapping between signals and virtual 
interrupts is not one-to-one.  The Ethernet library assures that one virtual interrupt is 
delivered for each packet arrival or departure. 

device_driver 
The device driver module builds a clean interface on top of the virtual Ethernet device.  
The abstraction is an input queue of RawEthernetPackets that eventually are sent to 
writer to be injected into the network, and an output queue of RawEthernetPackets that is 
fed by new packets arriving from reader and which empties into a higher level layer. 

ethernet_mux 
The Ethernet multiplexor sends incoming RawEthernetPackets to the next appropriate 
module based on their Ethernet type field.  Currently, only two types are recognized: 
ARP and IP.  All other packets are forwarded to other_module, which discards them.  
The Ethernet multiplexor also accepts outgoing RawEthernetPackets from the ARP, IP 
and other modules, and forwards them to the device driver for transmission.  The figure 
shows where other modules could be attached for, e.g., IPX or NetBEUI. 

arp_module 
The ARP module services requests for IP address to Ethernet address mappings, both 
from the network and from the IP module.  It maintains a cache of such mappings.  It will 
only answer requests for its own IP address from the network, but will answer requests 
for any IP address from the IP module.  If the IP module requests an address that is not in 
the cache, the ARP module will inject an appropriate ARP request into the network. 

ip_module 
The IP module implements IPv4 functionality.  In communicating with the Ethernet 
multiplexor, it uses RawEthernetPackets.  When communicating with higher-level 
modules, it uses Packets.  In such Packets, the IP header has been stripped from the 
payload and added to the headers section of the Packet.  At this point, a Packet will have 
an Ethernet header, an IP header, payload, and (possibly) an Ethernet trailer. 

ip_mux 
The IP multiplexor forwards (IP) Packets according to the IP packet type.  Currently, 
only UDP and TCP are recognized.  Packets of other types are currently dropped.  The 
figure shows where modules for other types of packets (ICMP, IGMP, etc) would be 
inserted. 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 8 of 15 

udp_module 
The UDP module implements UDP communication, matching (IP) Packets from the IP 
multiplexor with SockRequestResponse messages from sock_module.  The details of this 
interface are complex and are described below in the Interfaces section. 

tcp_module 
The TCP module implements TCP communication, matching (IP) Packets from the IP 
multiplexor with SockRequestResponse messages from sock_module.  This interface is 
complex and described below in the Interfaces section. 

sock_module 
The Sock module interfaces applications to the modules, such as UDP and TCP that are 
immediately below the Sock module.  The interface to applications is through fifos that 
communicate with the libminet_socket.a library that is linked to the application.    This is 
a complex interface and is described below.  At this point in time, the Sock module 
supports a single application at a time. 

libminet_socket.a 
This is a library of stubs that provides the Minet socket interface (separate handout) to 
user applications.  Each stub communicates the call to the Sock module which does the 
actual work.  In addition to Minet, the library can also be initialized to act as a simple 
wrapper to the kernel socket interface, bypassing the Minet stack.  This is convenient for 
debugging purposes and for use in a networking class that takes a top down approach. 

Interfaces 
Minet modules generally communicate using pairs of fifos.  The protocol by which a 
module rendezvous with its neighbors on a fifo pair was described earlier.  In this section, 
we will assume that the modules have already connected.  The interfaces between 
modules can then be described in terms of the data types that are exchanged and under 
what conditions they are exchanged.  Each fifo pair carries only a single data type, which 
simplifies the interfaces considerably.  Implementations are simplified by allowing them 
to assume that serialization or unserialization of a data type will not block if select 
indicates that the fifo is ready for output or input.  
 
Most of the interfaces are quite simple, consisting merely of Packets or 
RawEthernetPackets.  The more complex interfaces are those between the Sock module 
and its neighbors.  This is because the sock module is responsible for matching 
application requests and the flow of network data.   

Ethernet Library and reader 
The Ethernet library spawns reader and communicates with it using a Unix domain 
socket pair. Reader opens the Ethernet device in promiscuous mode, reads Ethernet 
packets, filters out packets not bound for this machine (other filters can be added), and 
Serializes the remaining packets to the Ethernet Library as RawEthernetPackets.  After 
each packet is sent, reader raises SIGUSR1 on the Ethernet Library’s process.   



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 9 of 15 

Ethernet Library and writer 
The Ethernet library spawns writer and communicates with it using a Unix domain socket 
pair.   The Ethernet library sends a packet by serializing a RawEthernetPacket to writer.  
Writer receives the packet and, at some point in the future,  writes it to the network.  It 
then serializes an error code back to the Ethernet Library and raises SIGUSR1 on the 
Ethernet Library’s process. 

device_driver and Ethernet Library 
The device driver initializes the virtual Ethernet device by calling EthernetStartup with an 
appropriate EthernetConfig.  The EthernetConfig contains the device number to be used 
and a pointer to the device driver’s interrupt service routine (ISR).  Once the device is 
successfully initialized, it will begin calling the ISR when packets arrive or when 
outgoing packets have been sent.  These calls are derived from the SIGUSR1s that reader 
and writer send to the Ethernet Library.  However, they are appropriately massaged so 
that exactly one call arrives for each received packet or sent packet.  There is no telling 
when these virtual interrupts will occur, so device driver must be very carefully written.  
 
The ISR will be called with a device number and a service type.  The service type is 
either  a new packet arrival, which can be read using the EthernetGetNextPacket() 
function, a DMA completion for an outgoing packet, a DMA failure for an outgoing 
packet, or an output buffer full failure.  The device driver can initiate a DMA to send a 
packet by calling the EthernetInitiateSend() function.   

device_driver and ethernet_mux 
The device driver sends newly arrived RawEthernetPackets to the Ethernet multiplexor.  
Similarly, the Ethernet multiplexor sends outgoing RawEthernetPackets down to the 
device driver.   

ethernet_mux and arp_module, ip_module, other_module, etc. 
The Ethernet multiplexor examines incoming RawEthernetPackets from the device driver 
and routes them to higher level modules based on their Ethernet type field.  It forwards 
RawEthernetPackets arriving from higher-level modules to the device driver.  The ARP 
module responds to ARP requests for the interface’s IP address with responses containing 
the interface’s Ethernet address.  These addresses are specified through environment 
variables, which we explain later.  

arp_module and ip_module 
The ARP and IP modules communicate using ARPRequestResponse objects.  When the 
IP module needs to map an IP address to an Ethernet address, it sends an 
ARPRequestResponse with the IP address filled in and the REQUEST flag set to the 
ARP module.  If the ARP module finds the mapping in its cache, it fills in the Ethernet 
address, sets the flag to RESPONSE_OK and sends it back to the IP module.  If the 
mapping is not in the cache, it sets the flag to RESPONSE_UNKNOWN, sends the 
ARPRequestResponse back to the IP module.  As a side effect, it also generates a 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 10 of 15 

RawEthernetPacket containing an ARP request for the IP address and sends it to the 
Ethernet multiplexor. 

ip_module and ip_mux 
The IP module communicates with the IP multiplexor using Packets that have an 
EthernetHeader and an IPHeader.  Outgoing Packets arriving from the multiplexor are 
converted into one or more RawEthernetPackets and forwarded to the Ethernet 
multiplexor.  

ip_mux and udp_module, tcp_module, ipother_module, etc 
When the IP multiplexor receives a Packet from the ip_module, it routes it to a higher-
level module based on its IP type field.  Packets received from a higher level module are 
forwarded to the ip_module.   

udp_module, tcp_module, ipother_module, etc. and sock_module 
Communication between the SOCK module and lower-level modules is done using 
SockRequestResponses, which have serialization features.  The model is asynchronous 
request/response.  The sending module sends a SockRequestResponse that encodes its 
request to the receiving module.  In response, the receiving module sends back a 
SockRequestResponse that encodes the status of the last action.  A SockRequestResponse 
contains a  request type, a Connection , a Buffer containing data, a byte count, and an 
error code. 
 
Request/Response Ordering 
Note that it is possible for both modules to send a request first. This is not a race 
condition - in principle, a module should be able to handle responses asynchronously as 
they arrive provided that the responses are returned in the same order that their requests 
are made. In other words, there must be a total order on requests and a total order on 
responses, but there may be only a partial order on requests and responses together.  This 
means that responses do not need (and do not have) any field to indicate which request 
they match to. 
 
Connection M atching 
A fundamental abstraction is that of a Connection, which is used even for connection-less 
protocols such as UDP.  The Connection structure encodes the endpoints of the 
communication (ipaddresses and ports) as well as its protocol.  One of the endpoints may 
be unbound if it will be supplied later (for example, a passive TCP open).  The Sock 
module and lower-level modules identify particular flows of data by using a Connection.  
For example, the Sock module presents sockets to the application as integer file 
descriptors.  Internally, it maintains a file descriptor to Connection mapping.  When the 
Sock forwards, for example, an ACCEPT request, to the TCP module, it uses a 
Connection to identify the connection to the TCP module.  The TCP module maps the 
Connection to its internal representation as appropriate. 
 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 11 of 15 

sock_module to udp_module 
Here are the meanings of the different types of SockRequestResponses that can be sent 
from Sock module to the UDP module: 
 

• CONNECT: active open to remote.   The UDP module ignores this.  A STATUS 
with the same connection, 0 bytes, and an error is returned.  The Sock module 
must manage connect requests to UDP addresses. 

• ACCEPT: passive open from remote.  The UDP module ignores this.  The same 
behavior as CONNECT is required. 

• WRITE: send UDP packet.     Connection source is the local host and port, the 
connection destination  is  the remote host and port, and the protocol is UDP.  The 
data Buffer contains data to be sent (if data is larger than the maximum size UDP 
packet that the UDP module can sent, then only the first maximum size bytes are 
sent.  The byte count and error code are ignored.   The response is a STATUS 
with the same connection, no data, the number of bytes actually sent, and the error 
code.   One WRITE generates one UDP packet. 

• FORWARD: forward matching packets.   The connection represents the 
connection to match on.  The local and remote addresses may be wildcards 
(IPADDR_ANY, PORT_ANY).  Received matching packets will be forwarded to 
the Sock module as WRITEs.  The response is a STATUS with the same 
connection, no data, zero bytes, and an error code. 

• CLOSE: close connection.  Connection represents the connection to match on.  If 
there is a matching FORWARD request, this will remove it.  Otherwise it is an 
error.  A STATUS with the same connection, zero bytes, and the error is returned. 

• STATUS: status update.  This should be sent in response to UDP WRITEs.  The 
connection should match that in the WRITE.  The error code is required but 
ignored. The byte count  is the number of bytes that were actually received. 

 
Udp_module to sock_module 
Here are the meanings of the different types of SockRequestResponses that can be sent 
from the UDP module to the Sock module: 
 

• WRITE: new data is available.  The connection is fully bound, giving both 
endpoints and the protocol, the data Buffer contains the data in the packet, and the 
byte count and the error code are undefined.  In response, the Sock module should 
send a STATUS stating  how many bytes were read.  Note that UDP will not 
buffer data. 

• STATUS: status update.  This is sent in response to Sock module  requests as 
noted above. 

 
sock_module to tcp_module 
Here are the meanings of the different types of SockRequestResponses that can be sent 
from Sock module to the UDP module: 
 

• CONNECT: active open to remote.  The connection should be fully bound.  The 
data, byte count, and error code fields are ignored.  The TCP module will begin 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 12 of 15 

the active open and immediately return a STATUS with the same connection, no 
data, no byte count and the error code. After the connection has been fully 
established or has failed, it will return a WRITE with zero bytes.  If the 
connection could not be established, the error code will be non-zero. The Sock 
module must manage binding on CONNECT requests. 

• ACCEPT: passive open from remote.  The connection should be fully bound on 
the local side and unbound on the remote side.  The data, bytes count, and error 
fields are ignored.  The TCP module will do the passive open and immediately 
return a STATUS with only the error code set.  Whenever a connection arrives, 
the TCP module will accept it and send a zero byte WRITE with the fully bound 
connection.   

• WRITE: send TCP data.  The connection source is the local host and port, the 
connection destination  is the remote host and port, and the protocol is TCP.  The 
connection must refer to the result of a previously successful  ACCEPT or 
CONNECT request.  The data Buffer contains the data to be sent, while the byte 
count and error fields are ignored.  The response is a STATUS with the same 
connection, no data,  the number of bytes actually queued by the TCP module, 
and the error code.   One WRITE may generate multiple TCP segments.  It is the 
responsibility of the Sock module or of the application to deal with WRITEs that 
actually write fewer than the required number of bytes. 

• FORWARD: forward matching packets.  The TCP module ignores this message.  
A zero error STATUS will be returned. 

• CLOSE: close connection.   The connection represents the connection to match on 
and all other fields are ignored.   If there is a matching connection, this will close 
it.  Otherwise it is an error.  A STATUS with the same connection and an error 
code will be returned. 

• STATUS: status update.  This should be sent in response to TCP WRITEs.  The 
connection should match that in the WRITE.  It is important that the byte count 
actually reflects the number of bytes read from the WRITE.  The TCP module 
will resend the remaining bytes at some point in the future. 

 
tcp_module to sock_module 
Here are the meanings of the different types of SockRequestResponses that can be sent 
from the UDP module to the Sock module: 

• WRITE: new data on a connection.  The connection will be fully bound, the data 
buffer will contain the data, and the other fields should be ignored.  In response, 
the Sock module should send a STATUS with the same connection and the 
number of bytes it actually accepted.  The TCP module will resend data that has 
not yet been accepted. 

• STATUS: status update.  This is sent in response to various connection requests 
as described above. 

sock_module to libminet_socket.a 
In progress – Kevin Dill 
 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 13 of 15 

Setup and Configuration 
Minet is supplied with a Makefile and various scripts to simplify building and using it. 

Building Minet 
You must have the software environment described on the first page.  This is the only 
environment on which Minet has been built and tested.  To build Minet do the following: 
 

1. Unpack the Minet tar file 
2. cd minet  
3. touch .dependencies 
4. make depend clean all 

 
You should now have the following items: 
 

• libminet.a – general library of Minet data types 
• libminet_socket.a – stub library for Minet applications 
• modules: reader, writer, device_driver, ethernet_mux, arp_module, ip_module, 

other_module, ip_mux, udp_module, tcp_module, sock_module (Note: you may 
have a different list of modules depending on your instructor.  Furthermore, some 
modules, such as reader and writer, may be supplied to you in binary form only.) 

• app – a sample application 
 
If you are building reader and writer, you must set their permissions appropriately.  The 
script fixup.sh, WHEN RUN AS ROOT, will set the permissions correctly. 
 
All Minet compile-time configuration options live in the file config.h.  Because most 
options are run-time, you will probably not have to ever change this file.  

Configuring Minet 
To configure Minet, edit the file setup.sh and then source it.  It is important that you 
SOURCE the script and not simply run it because it sets a number of environment 
variables.   If you run it, these variables will be set only in the child shell and not your 
shell, and thus will not be inherited by other programs you run.   In addition to setting up 
your environment, setup.sh will also create fifos (in the directory ./fifos) for you if they 
are needed.  Depending on your instructor, it may also set up reader and writer binaries. 
 
The following describes the environment variables that setup.sh sets: 

• MINET_IPADDR – the IP address assigned to the virtual Ethernet device. 
• MINET_ETHERNETDEVICE – the physical Ethernet device that will be used by 

Minet.  This is typically “eth0”   
• MINET_ETHERNETADDR – the Ethernet address of the actual Ethernet card.  

You can run /sbin/ifconfig  to find out what this should be 
• MINET_READER – the path of the reader binary that will be used 
• MINET_WRITER – the path of the writer binary that will be used 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 14 of 15 

• MINET_READERBUFFER – the size of the input buffer on the virtual Ethernet 
device.  Deprecated. 

• MINET_WRITERBUFFER – the size of the output buffer on the virtual Ethernet 
device.  Deprecated. 

• MINET_DEBUGLEVEL – the debug level for debugging printfs.  Zero denotes 
no debugging output.  Higher debug levels result in more debugging output 

• MINET_DISPLAY – how Minet should display output when run.  “xterm” means 
each module (except for reader and writer) runs in its own xterm window.  This is 
the usual mode of operation.  “gdb”  means that each module is run in a separate 
xterm under the gdb debugger.  “ log”  means that each module is run in the 
background with its output going to log files.  For example, ip_module would 
produce ip_module.stdout.log and ip_module.stderr.log. 

• MINET_MSS – TCP maximum segment size 
• MINET_MIP – Maximum IP packet size 
• MINET_MTU – Maximum Transmissible Unit of Ethernet device 
• MINET_FRAGMENTATION – enables IP fragmentation support if defined 
• MINET_CONGESTION – enables TCP congestion control if defined 
• MINET_ROUTING – enables IP module routing if defined 

 
This list will very likely change as Minet becomes more robust 

Running Minet 
Make sure that you have SOURCED setup.sh.  The following assumes further that 
MINET_DISPLAY=”xterm”.  To start Minet, run “go.sh” .  You should very quickly 
have at least 10 xterms on your display, each running a module.  If some of the xterms 
immediately disappear, make sure that the device_driver xterm is not showing an error.  
It is essential that device_driver be able to spawn reader and writer successfully.  Check 
that the environment variables described above are set reasonably.  
 
What is displayed in the xterms depends on network traffic and what the application is 
trying to do.  The default application does nothing but sit and print “ la la la” . 
 
To stop Minet, run “stop.sh” .  The xterms should all disappear.   

Security Concerns 
Minet encapsulates access to the network in the reader and writer modules.  It is critical 
that reader and writer binaries have appropriate protections.  We strongly recommend 
that they be supplied only in binary form, be owned by root, have root-only execute 
permissions, and have their setuid bits set so that ordinary users can run them.   
 
Both reader and writer are quite simple and offer significant opportunity for filtering.  
Reader filtering is particularly simple because it already supplies a Berkeley packet filter 
program to libpcap.   
 



CS 395-0, Section 22 The Minet TCP/IP Stack  Dinda, Fall 2000 
 

 Page 15 of 15 

We also recommend that student traffic be constrained to the 10.0.0.0 subnet so that it 
doesn’t leak to the outside world.   It is also a good idea to have the students work on a 
switched Ethernet network to minimize resource conflicts. 


