CS 395-0, Section 22 Project Part A Dinda, Fall 2000

Web Client And Server
Project Part A

Overview

In this part of the project, you and your partner will build a simple web client and a
succession of serversto which it can connect. The goal isto slowly introduce you to
Unix and socket programming and get you to a stage where you will be able to tackle the
subsequent parts of the project. The last server that you will construct will have roughly
the same structure as the TCP and I P layers of the network stack you will build. Thereis
also an extra credit server you may build that is structured like a real high performance
web server or cache, such as Inktomi’s Traffic Server or the Squid cache.

HTTP and HTML

The combination of HTTP, the Hypertext Transport Protocol, and HTML, the Hypertext
Markup Language, forms the basis for the World Wide Web. HTTP provides a standard
way for aclient to request typed content from a server, and for a server to return such
datato the client. “Typed content” simply means a bunch of bytes annotated with
information (a MIME type) that tells us how we should interpret them. For example, the
MIME type text/plain tells us that the bytes are unadorned ASCII text. Y ou will
implement a greatly simplified version of HTTP 1.0.

HTML (type text/ntml) content provides a standard way to encode structured text that can
contain pointers to other typed content. A web browser parses an HTML page, fetches
all the content it refers to, and then renders the page and the additional embedded content

appropriately.

HTTP Example

In this project, you will only implement HTTP, and only atiny subset of HTTP 1.0 at
that. HTTP was originally a very simple, but very inefficient protocol. Asaresult of
fixing its efficiency problems, modern HTTP is considerably more complicated. It's
current specification, RFC 2616, is over ahundred pageslong! Fortunately, for the
purposes of this project, we can ignore most of the specification and implement a tiny
Subset.

The HTTP protocol works on top of TCP, areliable stream-oriented transport protocol,
and is based on human-readable messages. Because of these two facts, we can use the
telnet program to investigate how HT TP works. We'll use telnet in the role of the client
and www.cs.northwestern.edu in the role of the server. The typed content we'll transfer
isthe CS department’s home page. Thisis essentialy the same as fetching the home
page using your favorite web browser.

Page 1 of 9

CS 395-0, Section 22 Project Part A Dinda, Fall 2000

The following shows what this looks like for the URL
http://www.cs.northwestern.edu/index.html. The text in bold is what you would type,
while the text initalic are the parts of the response that we'll talk about.

$ tel net www. cs. northwestern. edu http

Trying 129. 105. 99. 240. ..

Connected to Godzilla.cs. nw. edu (129.105.99. 240).
Escape character is '"]".

GET /index.htm HTTP/ 1.0

(bl ank |ine)

HTTP/ 1.1 200 &K

Date: Tue, 12 Sep 2000 14:55:18 GVII

Server: Apache/1.2.6 Red Hat

Last-Modified: Wed, 06 Sep 2000 22:57:54 GVIT
ETag: "194822-2ab9- 39b6chf 2"

Cont ent - Lengt h: 10937

Accept - Ranges: bytes

Connection: close

Content - Type: text/htm

<! DOCCTYPE HTM. PUBLIC "-//1ETF/ / DTD HTM./ / EN' >

<htm >

</ htnl >

Connection cl osed by foreign host.
$

The first thing to notice isthat we are opening a TCP connection to port 80 (telnet looks
up the service “http” inthe list /etc/services and discovers that it isa TCP service that
runson port 80.) Telnet doesa DNS lookup on the host www.cs.northwestern.edu and
findsthat it isat IP address 129.105.99.240. It then does areverse lookup on the P
address to find the canonical name of the machine (www is an dias for godzilla). It then
opens the connection and lets us type.

“CET /index.htm HTTP/ 1. 0" isthe most basic form of an HTTP 1.0 request, and
the form that you will implement. It says “please give me the file that you think of as
/index.html using the 1.0 version of the HTTP protocol.” The blank line demarcates the
end of the request. Thisis necessary because a more complex request may place further
conditions (on additional lines) on what the client is willing to accept and how it is

willing to accept it.

Page 2 of 9

CS 395-0, Section 22 Project Part A Dinda, Fall 2000

The response always begins with a line that states the version of the protocol that the
server speaks (“HTTP/ 1. 1” inthis case), an error code (*200”), and a textual
description of what that error code means (“OK”). Next, the server provides a bunch of
information about the content it is about the send as well as information about itself and
what kinds of services it can provide. The most critical lines here are“Cont ent -
Lengt h: 10937”, which tells us that the content will consist of 10937 bytes, and
“Cont ent - Type: text/htm”, which tellsushow to interpret the content we shall
receive. A blank line demarcates the end of the response header and the beginning of the
actual content. After the content has been sent, the server closes the connection.

Part 1: HTTP Client
Write a client program that supports the following command line and semantics.

http_client server_rnane server_port server_path

Whenrun, htt p_cl i ent should open a connection to port ser ver _port onthe
machineser ver _name, and then send an HTTP request for the content at

server _pat h. It should then read the HTTP response the server provides. If the
responseisthat ser ver _pat h isvalid and includes the data, ht t p_cl i ent should
write the data out to standard out and exit with areturn code of zero. Y ou can then view
this output using a web browser such as netscape or lynx. If thereisan error,

htt p_cl i ent should write the response to standard error and exit with areturn code of
—1. For example,

http_client ww. cs. northwestern. edu 80 index. htm

should print the CS Department’s home page to standard out and return zero, while

http_client www cs. northwestern.edu 80 junk. htm

should print the response to standard error and return —1.

Part 2: Connection-at-a-time HTTP Server

Write an HTTP server that handles one connection at atime and that servesfilesin the
current directory. Thisisthe simplest kind of server. The command-line interface will
be

http_serverl port

Y ou will then be able to use http_client, telnet, or any web browser, to fetch files from
your server. For example, if you run

http_client host port http_serverl.cc

you should receive the contents of your source file.

Page 3 0of 9

CS 395-0, Section 22 Project Part A Dinda, Fall 2000

It isimportant to note that you will not be able to use port 80. Ports less than 1500 are
reserved, and you need specia permissionsto bind to them.

Y our server should have the following structure:

1. Create a TCP socket to listen for new connections on (What packet family and
type should you use?)

2. Bind that socket to the port provided on the command line. We'll call this socket
the accept socket.

3. Listen on the accept socket (What will happen if you use a small backlog versus a
larger backlog? What if you set the backlog to zero?)

4. Do the following repeatedly

a. Accept anew connection on the accept socket (When does accept return?
Isyour process consuming cycleswhileit isin accept?) Accept will
return a new socket for the connection. We'll call this new socket the
connection socket. (What is the 5-tuple describing the connection?)

b. Read the HTTP request from the connection socket and parseit. (How do
you know how many bytes to read?)

c. Check to seeif the file requested exists.

d. If thefile exists, construct the appropriate HT TP response (What’ s the
right number?), write it to the connection socket, and then open the file
and write its contents to the connection socket.

e. If thefile doesn't exist, construct aHTTP error response and write it back
to the connection socket

f. Close the connection socket.

Part 3: Simple Select-based Multiple-connection-at-a-time Server

The server you wrote for part 2 can handle only one connection at atime. Try the
following. Open atelnet connection to your ht t p_ser ver 1 and type nothing. Now
make arequest to your server using your htt p_cl i ent program. What happens? If
the connection request is refused, try increasing the backlog you specified for listenin
http_serverl and then try again. After ht t p_ser ver 1 accepts a connection, it blocks
(stalls) while reading the request and so is unable to accept another connection.
Connection requests that arrive during this time are either queued, if the listen queue
(whose size you specified using listen) is not full, or refused, if it is.

Consider what happens if the current connection is very slow, that it is running over a
modem link, for example. Y our server is spending most of its time idle waiting for this
slow connection while other connection requests are being queued or refused. Reading
the request is only one place whereht t p_ser ver 1 can block. It can also block on
waiting for a new connection, on reading data from afile, and on writing that data to the
socket.

Page 4 of 9

CS 395-0, Section 22 Project Part A Dinda, Fall 2000

Writean HTTP server, ht t p_ser ver 2, that avoids just two of these situations: waiting
for a connection to be established, and waiting on the read after a connection has been
established. Y ou can make the following assumptions:

» If you can read one byte from the socket without blocking, you can read the whole

request without blocking.

* Reads on the file will never block

* Writeswill never block
It isimportant to note that if you have no open connections and there are no pending
connections, then you should block. The components of the networking stack you will
build later in the quarter will also make these assumptions when they communicate with
each other. Inthat case, the assumptions are reasonable since they will all run on asingle
machine communicating with a mechanism called fifos or named pipes (man fifo).

To support multiple connections at atimeinht t p_ser ver 2, you will need to do two
things:

» Explicitly maintain the state of each open connection

» Block on multiple sockets, file descriptors, events, etc.
It isup to you to decide what the states of a connection are and how you will maintain
them. However, Unix, as well as most other operating systems, provides a mechanism
for waiting on multiple events. The Unix mechanismisthesel ect systemcall.
sel ect alowsusto wait for one or more file descriptors (a socket is akind of file
descriptor) to become available for reading (so that at least one byte can be read without
blocking), writing (so that at least one byte can be written without blocking), or to have
an exceptional condition happen (so that the error can be handled). In addition, sel ect
can aso wait for a certain amount of time to pass. We have provided you with aversion
of select called m net _sel ect. m net _sel ect has precisely the same semantics as
sel ect (man select), but it makesit easy to choose between the kernel network stack
and the user-level Minet stack.

Y our server should have the following structure:

Create a TCP socket to listen for new connections on

Bind that socket to the port provided on the command line.
Listen on that socket, which we shall call the accept socket.
Initialize the list of open connections to empty

Do the following repeatedly

a. Makealist of the sockets we are waiting to read from the list of open
connections. We shall cal thisthe read list.

b. Add the accept socket to theread list. Having a new connection arrive on
this socket makes it available for reading, it’s just that we use a strange
kind of read, the accept call, to do the read.

c. Calm net_sel ect withtheread list. Your program will now block
until one of the sockets on the read list is ready to be read.

d. For each socket ontheread list that m net _sel ect has marked
readable, do the following:

agrwNPE

Page 5 of 9

CS 395-0, Section 22 Project Part A Dinda, Fall 2000

I. If itisthe accept socket, accept the new connection and add it to
the list of open connections with the appropriate state

ii. If it some other socket, performs steps 4.b through 4.f from the
description of http_serverl. After closing the socket, delete it from
the list of open connections.

Test your server using telnet and ht t p_cl i ent as described above.

Extra Credit: Complex Select-based Multiple-connection-at-a-time
Server

htt p_ser ver 2 can handle multiple connections at atime, but there remain a number
of places where it can block. These are implicit in the assumptions we have made. In
general, aimost any system call can block. In particular, if sel ect tellsusthat afile
descriptor is readable, it only meansthat at least one byte can be read. Reading any
subsequent byte may block. The same holds true for writes.

To avoid unnecessary blocking, then, the program must check each system call that may
block, and certainly read and write, before it executes the system call. Does this mean
that we haveto call sel ect before we read or write each byte? Not necessarily. We
can instead using non-blocking 1/0. If we set afile descriptor to operate in non-blocking
mode, then system calls on that file descriptor will fail with an EAGAI N error instead of
blocking. EAGAI N means“l can't do that right now because doing so would block you
and you asked me never to let that happen.” To read more about non-blocking 1/0, see
theman pagefor fcnt!| . fcntl (fd, F_SETFL, O NONBLOCK) isoneway to set a
file descriptor to non-blocking 1/0. To learn how to retrieve error codes from system
calls, check out the man page for er r no.

For extracredit, you can buildan HTTP server, http_server 3, whichusessel ect
and non-blocking 1/0 to provide availability even in the face of blocking on any of the
reads, writes, and accepts, as well as dealing with partial reads and writes. The overall
structure of the code is as follows.

Create a TCP socket to listen for new connections on
Bind that socket to the port provided on the command line.
Listen on that socket, which we shall call the accept socket.
Initialize the list of open connections to empty. Y ou should associate with each
connection its state and the file descriptor for the file it is reading, etc.
Do the following repeatedly
e. Makealist of file descriptors we are waiting to read from the list of open
connections. Thiswill include both sockets and file descriptors for files
you are in the process of reading. We shall call thisthe read list.
f. Add the accept socket to the read list.
g. Makealist of sockets we are waiting to write from the list of open
connections. We shall call thisthe write list.

PODNPRE

o

Page 6 of 9

CS 395-0, Section 22 Project Part A Dinda, Fall 2000

h. Cal m net _sel ect withtheread list and the write list. Your program
will now block until one of the sockets on the read list is ready to be read
or written.

i. For each socket ontheread list that m net _sel ect has marked
readable do the following

I. Ifitisthe accept socket, accept the new connection, set its socket
to be non-blocking, and add it to the list of open connections with
the appropriate state

ii. If it'ssome other socket, look up its connection in the list of open
connections, figure out how much you have left to read, and then
read until you get an EAGAI N or you' ve read the whole request.

1. If you get the EAGAI N, update the connection’s state
accordingly.

2. If you've read the whole request, open thefile, set itsfile
descriptor to non-blocking, add it to the connection state,
and update the state to note that you're in the process of
reading the file.

iii. If it's some other file descriptor, look up its connection in the list
of open connections, figure out how much you have left to read,
and then read until you get an EAGAI N or you' ve read the whole
file.

1. If you get the EAGAI N, update the connection state to
reflect you much you have read.

2. If you'veread the whole file, close the file, update the
connection state to reflect that you are ready to start writing
the contents to the socket.

j. For each socket on the write list that m net _sel ect has marked
writeable do the following.

i. Look up its connection in the list of open connections, figure out
how much you have left to write, and then write until you get an
EAGAI N or you've read the whole request.

1. If you get the EAGAI N, update the connection state to
reflect how much you’ ve written.

2. If you've written the whole file, close the socket and
remove the connection from the list of open connections.

Mechanics

* Your code must use the Minet sockets layer that we will provide. Thislayer can be
set to pass through calls to kernel sockets interface, or it can pass calls to the Minet
user-level stack (the TCP and IP parts of which you will write later in the quarter!)
Here you will be using it in its kernel-pass-through mode. Thereis a separate
handout on compiling and linking with the Minet sockets layer.

* Your code must be writtenin C or C++ and must compile and run under Red Hat
Linux 6.2 on the machinesin our cluster. In particular, we will compile your code
using GCC 2.95.2 and GNU Make 3.78.1, which are installed on the lab machines.
Y ou must provide a Makefile. We will expect that running “make” will generate the

Page 7 of 9

CS 395-0, Section 22 Project Part A Dinda, Fall 2000

executableshttp_client,http_serverl,http_server 2, and (if you
decide to do the extra credit), ht t p_ser ver 3.

Things That May Help You

» Section 2.2 of your textbook provides more information about HTTP and shows
another example of smple HTTP interactions.

e You can (and should) play with www.cs.northwestern.edu or some other web server
using telnet to port 80.

* RFC 2616, which you can find via http://www.ietf.org, is the specification for HTTP
1.1. Thiscan be daunting, but it isthe standard. The specification of HTTP 1.0,
RFC 1945, is simpler and probably as relevant for this assignment.

» Section 2.6 of your textbook gives examples of writing TCP clients and serversin
Java, while Section 2.8 gives examples of a simple web server written using Java.

» The handout “Socketsin a Nutshell”.

* The handout “Minet Sockets’

* The handout “Make in a Nutshell”

* Rick Steven’s Unix Network Programming book has lots of source code examples.

* The C++ Standard Template Library

e Themicro_http server (http://www.acme.com/software/micro_httpd/) can show you
how to parse and generate HT TP requests and responses.

* CVS (http://www.loriafr/~molli/cvs-index.html) is a powerful tool for managing
versions of your code and helping you and your partner avoid stepping on each
other’stoes.

Other kinds of servers

Complex select-based multiple-connection-at-a-time servers, such as the one you can
build for extra credit, can provide very high performance. For this reason, this model is
used in server and cache engines that must supports thousands of requests per second and
more. Inktomi’s Traffic Server and the Squid Cache use this approach. If you've done
Windows, Mac, or X11 programming, you’ll notice that select-based programming bears
a strong resemblance to the event-driven model they have at their core.

We will useasel ect -based approach (albeit the smplified variant much like that in

Part 3) in the remainder of this class. We do this for two reasons. because we need to
support multiple connections at atime (TCP needs to talk to both the Socket layer and the
IP Layer, for example), and because we want to stick with a single thread of control given
that you may have never been introduced to multi-process or multi-thread programming
before. Nonetheless, it is interesting to note the other approaches that are possible.

Generally, these other approaches involve having multiple threads of control. This
simplifies design—it is OK for one thread of control to block because there are other
threads of control that can execute. However, it also complicates design because these
threads of control may have to synchronize to share data and communicate with each
other.

Page 8 of 9

CS 395-0, Section 22 Project Part A Dinda, Fall 2000

M ulti-process servers. One approach isto have each connection handled by a separate
process. One process accepts connections and then hands them off to other processesto
be serviced. The simplest, but most expensive, way to do thisisto create a new process
for each connection. Stevens gives examples of such servers on Unix, where they are
implemented using the fork system call. More often, a“pool” of processesis started
when the server isinitialized. Each of these processes then iteratively handles
connections passed to it from the process that accepts new connections. If all of these
processes are busy when a new connection arrives, the connection isrefused. The
Apache web server works like this.

Multithreaded servers: A thread is athread of control within a process, either
implemented in the kernel or at user-level. Threads are typically much cheaper to start
and switch than processes. Furthermore, threads within a process can communicate
much faster and more easily than two processes can. However, they can aso get in each
other’sway far more easily. Otherwise, multithreaded servers are similar to multi-
process servers—a new thread can be started for each connection, or athread from a
thread pool can be assigned to the connection. Microsoft’s Internet Information Server is
amultithreaded server (it aso uses multiple processes to better contain failures.)

Page 9 of 9

