
CS 395-0, Section 22 Project Part C Dinda, Fall 2000

 Page 1 of 5

IP for Minet

Project Part C
OPTIONAL FOR FALL 2000 - WILL NOT COUNT FOR YOUR GRADE

Overview
In this part of the project, you and your partner will build an implementation of IP for the
Minet TCP/IP stack. You will be provided with all parts of the stack except for the IP
module. You may implement the module in any way that you wish so long as it
conforms to its interfaces to other Minet components, and to the reduced IP standard
described here. However, Minet provides a considerable amount of code, in the form of
C++ classes, that you may use in your implementation. Furthermore, we recommend that
you implement your module as a select-based server, similar in spirit to the third part of
project part A. You may also earn extra credit by implementing additional parts of the
IP standard.

The Minet TCP/IP Stack
The Minet TCP/IP Stack is documented in a separate handout. After completing project
part B, you should be quite familiar with Minet. You will be given the source code to all
of the Minet modules, except for ip_module. The ip_module source you will be given is
only a framework – it simply connects with the rest of the stack. You are responsible
for filling it out.

You will also receive binaries for reader, and writer. It is vital that you use these
programs because they must be run as root or else they will not work. Because we don’t
want to give you root access, we are giving you binaries that are setuid to root. This
means that these programs (and only these programs) run as root. If you would like to
use reader and writer on a machine outside the TLAB, you will need root privileges on
that machine.

Your IP Addresses
Each of you was assigned 255 IP addresses (a 10.10.x/24 network address) earlier in the
quarter. You must again use these addresses for this project. They are special in that
packets sent to them will not be forwarded beyond the local network. In fact, if you are
using machines other than the TLAB machines, you will need to add a route so that they
actually make it to the local network.

Dedicated TLAB Machines
You may use any of the TLAB machines, either from the console or remotely via ssh. In
fact, you’ ll usually want to use two of them simultaneously. We have dedicated TLAB-
11 through TLAB-15 to running Linux for the duration of the quarter. These machines
should always be available for remote or console login. If they are not, send mail to
request@cs.cmu.edu.

CS 395-0, Section 22 Project Part C Dinda, Fall 2000

 Page 2 of 5

IP Specification
The core specification for IP is RFC 791, which you can and should fetch from
www.ietf.org. In general, you will implement IP as defined in that document, except for
the parts listed below.

• You do not have to support the Type Of Service field, other than copying it. Your
service may be completely FIFO.

• You do not have to implement any IP options.
• You do not have to support IP fragmentation. You should limit yourself to

sending 576 byte packets and always set the Don’t Fragment flag. This size IP
packet is guaranteed not to be fragmented by the network, and all IP
implementations must support at least this size packet.

• You may assume that the MTU is 1500 (ie, that everything is an Ethernet).
• You do not have to send or handle ICMP packets.
• You must implement routing and support at least two interfaces. You must

initialize your routing table from the file “./minet_static_routes”

Chapter 4 of your textbook covers IP within the context of routing. We suggest that you
read it first, then read RFC 1180, and finally read RFC 791. In addition, we will be
handing out other information as the quarter progresses. Rick Steven’s book, “TCP/IP
Illustrated, Volume1: The Protocols” is also very useful, as is Doug Comer’s
“Internetworking With TCP/IP Volume I: Principles, Protocols, and Architecture” . Both
of these books are available from Peter.

Interfaces
You must fully support the following two interfaces.

• eth0 : The first Ethernet card
• lo : The local loopback device

In addition, you must implement support for an arbitrary number of Ethernet devices
(eth1, eth2, etc). The local loopback device forwards IP packets right back up the stack.
It is used to allow two processes that are sharing the same Minet stack to communicate
using IP packets. The IP address of lo is 127.0.0.1. eth0 will be the destination for most
packets bound for other machines. You must assign it the IP address in the environment
variable MINET_IPADDR. Its physical address is in MINET_ETHERNETADDR.
The addresses of all Ethernet cards must be 10-net addresses.

Routing
You must implement support for routing over all interfaces. This means the following:

• Locally generated packets bound for local addresses (ie, the address of any of
your interfaces) should be routed to lo so that they go back up the stack.

• Locally generated packets bound for remote addresses should be routed through
the most appropriate interface according to the longest prefix matching rule.

CS 395-0, Section 22 Project Part C Dinda, Fall 2000

 Page 3 of 5

• Remotely generated packets bound for local addresses should be routed up the
stack.

• Remotely generated packets bound for remote addresses that are routable with
your routing table should be routed out the appropriate interface according to the
longest prefix matching rule.

• Remotely generated packets bound for remote addresses that are not routable
should be dropped.

IP Module / IP Multiplexor Interface
The IP module talks to the IP multiplexor using Packets that have extracted IP Headers.
The Packets may have other headers, such as Ethernet, UDP, TCP, or ICMP headers,
however, an IP header must always be present. When a received IP packet is bound for a
local address, it should be serialized to the IP multiplexor. Similarly, the IP multiplexor
will serialize outgoing IP packets to the IP module.

IP Module / Ethernet Multiplexor Interface
The IP module communicates with the Ethernet multiplexor using RawEthernetPackets.
To send a packet, it serializes a RawEthernetPacket to the multiplexor. To receive a
packet, it unserializes a RawEthernetPacket from the multiplexor.

IP Module / ARP Module Interface
The interface between these modules is request response. To make an ARP request, the
IP module serializes an ARPRequestResponse with the flag REQUEST to the ARP
module. In response, the ARP module will serialize back an ARPRequestResponse with
the flag RESPONSE_OK (meaning that the IP address was found in the cache and that
the mapping in the response is valid), or RESPONSE_UNKNOWN (meaning that no
mapping was in the cache and thus the response’s mapping is invalid.) Generally, when a
RESPONSE_UNKNOWN is returned, the ARP module will have also made a broadcast
ARP request. The IP module may retry the request at any time.

Recommended Approach
There are many ways you can approach this project. The only requirements are that you
meet the IP specification detailed above, that your IP module interfaces correctly to the
rest of the Minet stack, and that your code builds and works on the TLAB machines. We
recommend, however, that you use C++ and exploit the various classes and source code
available in the Minet TCP/IP stack. Furthermore, we recommend you take the roughly
the following approach.

1. Read Chapter four of your textbook
2. Read RFC 1180
3. Read RFC 791.
4. Reread the “Minet TCP/IP Stack” handout.
5. Fetch, configure, and build Minet. We will provide an ip_module.cc that

consists of the framework code needed to start up and connect to the appropriate
fifos.

CS 395-0, Section 22 Project Part C Dinda, Fall 2000

 Page 4 of 5

6. Extend this IP module so that it simply prints incoming RawEthernetPackets from
the Ethernet multiplexor and locally generated Packets from the IP multiplexor.
You should be able to run the stack with udp_client or tcp_client as the
application and see packets printed when you type and when you send your stack
traffic from netcat (nc).

7. Write a simple lo interface and router that forwards IP packets bound for
127.0.0.1 back up the stack. You should be able to test this using udp_client.

8. Write a generic interface class and specialize it for Ethernet. This class will store
state about the interface such as: (0) it’s name, (1) whether it is up or down, (2) its
IP address, (3) its physical layer (Ethernet) address, and (4) which fifos to use to
talk to it.

9. Write a routing table class. A routing table consists of mappings of network
addresses (i.e., 10.10.0.0/16 or 10.10.0.0 netmask 255.255.0.0) to interfaces. Your
routing table should be able to initialize itself with the mappings stored in a file
(the minet_static_routes file, which we will give you). Your routing table should
support dynamic changes (like those induced by RIP messages).

10. Implement the longest matching prefix rule within your routing table class. When
given an IP address, your routing table should be able to respond with an
interface.

11. Add static routes that send 10.10.0.0/16 packets to eth0 and that sends packets
bound for local IP addresses up the stack.

12. Add code to construct an IP Packet from each RawEthernetPacket you receive
from the Ethernet multiplexor.

13. Add code so that each Packet you construct from an incoming Ethernet packet is
routed according to your routing table.

14. Test incoming packets using netcat in UDP mode.
15. Add code so that each Packet you receive from the IP multiplexor is routed using

your routing table.
16. Interface with the ARP module so that you can find hardware addresses for these

outgoing packets. You’ ll need to put these destination addresses into an Ethernet
header and prepend it to the outgoing packet.

17. Add code to construct a RawEthernetPacket from such an outgoing packet and to
serialize it out to the Ethernet multiplexor.

18. Test outgoing packets using udp_client.
19. Test bi-directional communication using tcp_client.
20. Test your routing table by adding clones of your eth0 interface bound to different

addresses.
21. You’re done!

Extra Credit: IP Fragmentation Support
For extra credit, you may implement support for IP fragmentation. If you do so, you
should implement support both for fragmenting packets and for reassembling them.

CS 395-0, Section 22 Project Part C Dinda, Fall 2000

 Page 5 of 5

Extra Credit: RIP Support
For extra credit, you may implement support for the RIP routing information protocol, so
that you can advertise your routes and take advantage of the route advertisements of
others. .

Caveat Emptor
The Minet TCP/IP Stack is a work in progress. You are the first class to use it. You can
and will find bugs in it. We will do our best to make your experience as pleasant and fair
as possible. If you try hard, you will do well. If some part of Minet turns out to be an
unexpected impediment, this will not be reflected in your grade.

We also appreciate constructive feedback and suggestions. We plan to use Minet
extensively for teaching in the future. Your ideas, which we will credit accordingly, can
therefore have a lot of impact.

Mechanics
• Your code must function as a ip_module within the Minet TCP/IP Stack, as

described in a separate handout.
• Your code should be written in C or C++ and must compile and run under Red Hat

Linux 6.2 on the machines in the TLAB. In particular, we will compile your code
using GCC 2.95.2 and GNU Make 3.78.1, which are installed on the lab machines.
You must provide a Makefile. We will expect that running “make” will generate the
executable ip_module and that this module will meet the specification described in
this document and in the “Minet TCP/IP Stack” handout.

Things That May Help You
• RFC 791 is essential.
• RFC 1180 is a handy tutorial on IP and the lower layers it talks to.
• Chapter 4 of your book. Section 4.4 is a reasonable introduction. Remember that you

don’t have to implement ICMP, routing protocols, or fragmentation.
• Rick Stevens, “TCP/IP Illustrated, Volume1: The Protocols”
• Doug Comer, “Internetworking With TCP/IP Volume I: Principles, Protocols, and

Architecture”
• Rick Steven, “Advanced Programming in the Unix Environment” – especially handy

if you are having issues with fifos.
• The handout “Unix Systems Programming in a Nutshell”
• The handout “Make in a Nutshell”
• The handout “The TLAB Cluster”
• The C++ Standard Template Library. Herb Schildt’s “STL Programming From the

Ground Up” appears to be a good introduction
• GDB, Xemacs, CVS, etc.

