
EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 1 of 10

EECS 101:

An Introduction to Computer Science
for Everyone

Syllabus

Web Page

 www.nucs101.org

What roles this class can play for you
• For CS and CIS majors and minors: EECS 101 is a required core course in

the new curriculum (all new majors starting September, 2007).
• For Weinberg students: EECS 101 satisfies the area III (social and behavioral

sciences) distribution requirement.
• For everyone: This course explains the field of computer science

Instructor
 Peter A. Dinda
 Technological Institute, Room L463
 pdinda@northwestern.edu
 Office hours: Thursdays, 1:30-3:30pm or by appointment

Teaching assistant
Stephen Tarzia
Ford 2-221
starzia@northwestern.edu
Office hours: Wednesdays, 12-4pm or by appointment

Undergraduate assistants
 Jason Lee
 jasonlee2012@u.northwestern.edu
 Shamiq Islam
 i.shamiq@gmail.com
 Steven Jaconette

stevenjaconette2007@u.northwestern.edu
Combined office hours: Fridays, 2-4pm, Wilkinson Lab (Tech M338)

EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 2 of 10

Location and Time
 Lecture: Tuesdays and Thursdays, 3:30-4:50pm, Tech L361

Optional Recitation/Discussion Sessions
 Jason: Mondays, 6-7pm, Tech LG72
 Shamiq: Wednesdays, 5-6pm, Tech M177
 Steve: Thursdays, 5-6pm, Tech M177

Prerequisites
 None

All students at Northwestern are welcome
No prior knowledge of Computer Science is needed
There is no programming in this course

Who Should Take This Class
• All students at Northwestern who are interested in learning about what

computer science is, what computer scientists do, and how both affect the
world from the practical to the esoteric.

• Freshmen and those who are thinking about the pursuing the computer science
majors/minors in either McCormick or Weinberg.

• Computer Science and Computer Engineering students, who should become
familiar with the breadth of the intellectual endeavor of the field.

• Computer Science students on the new curriculum (this course is required)
• Weinberg students to satisfy the area III distribution requirement

What This Class Is About
The primary goal of this course is to answer these simple questions:

• “What is Computer Science?”
• “What do Computer Scientists do?”
• “How does Computer Science interact with the rest of the world?”

The very ubiquity of the products of Computer Science has sadly not been
coupled with a corresponding growth in the understanding of the intellectual
content, structure, history, and aspirations of the field, or of what the people in
the field actually think and do. Many people might answer the questions by
saying that Computer Science is “programming” or “coding”, that Computer
Scientists are programmers or manage programming projects, and that the field
interacts mostly by creating products. While the art of computer programming is
important and can be joyful, Computer Science encompasses much more. Here
are just a short selection of the kinds of questions and issues that Computer
Science grapples with that we will touch on in this class:

EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 3 of 10

• How can we make it possible for human beings to design and build ever

more complex artifacts? Computer software is among the most complex
creations of human beings and is at the bleeding edge of what we
understand how to design and build? How do we manage its complexity?

• How do we sustain the exponential growth of computing power, storage
capacity, and communications capacity? How do we exploit it?

• What are the mathematical and physical limits to computation and
communication? What can’t computers do? What is computation? What
is communication?

• What kinds of computational problems are there? How does the universe
limit how fast they can be solved?

• What kinds of computers are there? Are some fundamentally more
powerful than others?

• What kinds of languages are there? Can we find one that’s equally adept
at getting things done on a computer and explaining how it’s done to a
person?

• How can we translate from one language to another? How is this problem
different for human languages and computer languages? Do answers for
one have influence on the other?

• How can computers and human beings best interact?
• Is software creation an art, a science, or an engineering discipline?
• Can we make a computer learn by itself instead of programming it?
• Can we, and how can we, make a mind? How can we tell that we’re

successful?
• Is intellectual property theft? What are the implications to society of the

fact that a computer can process any information and making copies of
information is free? What are the implications of the Free (as in Freedom)
software movement?

• What are the limits to security and privacy that can be achieved
computationally? What implications do these fundamental limits have for
politics and law?

• Is computation based on physics or is physics based on computation?
• Is the universe a simulation?

Reading
In addition to introducing questions and concepts, the readings are also intended
to present the personalities and history that are involved, and to provoke
discussion and debate. Computer Science is a dynamic intellectual endeavor and
many core intellectual questions are still open.

A separate reading list shows all the sources the class draws on.

EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 4 of 10

You should purchase the following books. It’s cheapest if you buy the paperback
versions. Additional materials will be handed out in class or provided via the
web. Note that we will read only selected portions of these books, but you
should feel free to dive deeper into these books and the other materials listed on
the reading list.

• David Harel, Computers Ltd: What They Really Can’t Do, Oxford
University Press, 2003.

• Martin Davis, The Universal Computer: The Road from Leibniz to Turing,
W.W. Norton and Company, 2000. This excellent book is out of print,
but the NU Bookstore has a course-pack available.

• Paul Graham, Hackers and Painters: Big Ideas from the Computer Age,
O’Reilly Media, 2004.

• Lawrence Lessig, Code: Version 2.0, Basic Books, 2006. This book is
also available for free online at http://codev2.cc/ (Creative Commons
license)

• Richard Stallman, Free Software, Free Society: Selected Essays of
Richard M. Stallman, Free Software Foundation, 2002. This book is also
available for free online at http://www.gnu.org/ (GNU Public License)

• Steven Levy, Hackers: Heros of the Computer Revolution, Penguin, 2001.
• Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002. This

book is also available for free online at http://www.wolframscience.com/
• Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt

to Quantum Cryptography, Anchor, 2000
• Ray Kurzweil, Are We Spiritual Machines? Ray Kurzweil vs. the Critics

of Strong AI, Discovery Institute, 2002. This book is also available for
free online at http://www.kurzweilai.net

• Charles Petzold, Code: The Hidden Language of Computer Hardware and
Software, Microsoft Press, 2000.

• Eric Raymond, The Cathedral and the Bazaar: Musing on Linux and Open
Source by an Accidental Revolutionary, O’Reilly, 2001. Also mostly
available for free from http://www.catb.org/~esr/writings/cathedral-
bazaar/

• Scott Rosenberg, Dreaming in Code: Two Dozen Programmers, Three
Years, 4732 Bugs, and One Quest for Transcendent Software, Crown,
2007.

It’s a lot more fun if students discuss and debate the readings! There is a
discussion group that is accessible from the course web page, and students are
also strongly encouraged to participate in the recitation section.

Papers
During the course of the quarter students will pair up (i.e., work in teams of two
people) to write essays. The first essay will be on a personality in the history (or

EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 5 of 10

present) of computer science. The second essay will be on a computer science
topic, such as one of the questions given above. Each essay will be 10 pages
long.

The intent of these essays is threefold. First, the student will get a view of
computer science from two distinct cross-cutting points of view. Second, she will
have the opportunity to dive more deeply into particular aspects of the field.
Third, students will have the opportunity to do research and write as a team.

Exams
 There will be a midterm and a final. The final will not be cumulative.

Grading
40 % Term papers
20 % Class participation informed by reading.

This includes participation in the recitation section and the
online discussion group

20 % Midterm
20 % Final

Schedule

Week 1 Introduction

 The long arc from the Antikythera mechanism to today

Historical roots of modern computer science in mathematics, electrical
engineering, and psychology
A look at the big questions
Structure of the field (the core areas)
What computer scientists do (how people are employed)

Reading

• Jeannette Wing, “Computational Thinking”, Communications of the ACM,
Volume 49, Number 1, January 2006, pp. 33-35.
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

• Bernard Chazelle, “Could Your iPod be Holding the Greatest Mystery in
Modern Science?”, Math Horizons, April, 2006.
http://www.cs.princeton.edu/~chazelle/iPod

• Vannevar Bush, As We May Think, The Atlantic Monthly, July, 1945.
http://www.theatlantic.com/doc/194507/bush

• Wikipedia, “The Antikythera Mechanism”,
http://en.wikipedia.org/wiki/Antikythera_mechanism

• “Hackers and Painters”, Chapter 2 of Paul Graham, Hackers and Painters,
O’Reilly, 2004.

EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 6 of 10

• http://money.cnn.com/magazines/moneymag/bestjobs/2006/
• Preamble from David Harel, Computers Limited: What They Really Can’t

Do, Oxford University Press, 2000.

Week 2 Fundamental theories – The core ideas and how they are evolving

Discrete mathematics and logic – set theory and logic, not calculus, is
the basis of computer science

 Theory of computation and its surprising facts
 Theory of communication and its ubiquity
 Classical computers
 The “laws”: Moore, Gilder, Murphy

Reading
• Chapters 1-2, from David Harel, Computers Limited: What They Really

Can’t Do, Oxford University Press, 2000.
• Chapters 1, 6, 7 from Martin Davis, The Universal Computer: The Road

from Leibniz to Turing, W.W. Norton and Company, 2000.

Week 3 Algorithms and data structures – Solving problems, Manipulating Data

 Note: Instructor and TA will probably be out of town on Tuesday. There will
 probably be a guest lecture.

 Tractability of problems
 Algorithms
 Data structure concept

Simulation and its impact

Reading
• Chapters 3-5, from David Harel, Computers Limited: What They Really

Can’t Do, Oxford University Press, 2000.
• Chapter 8 from Martin Davis, The Universal Computer: The Road from

Leibniz to Turing, W.W. Norton and Company, 2000.

Week 4 Computer Systems – Raising the abstraction

 Architecture
 Operating systems

Databases
 Networking
 Middleware

Videos

EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 7 of 10

• ARPANET Video (origins of the Internet)
(http://www.newmediamedicine.com/blog/2006/08/16/arpanew-video/)
(Watch on your own)

• Possible demos of assembler, Linux Trace Toolkit and Ethereal. (In Class)
Reading

• Chapters 2, 3, 10, 11, 18, 22 from Charles Petzold, Code: The Hidden
Language of Computer Hardware and Software, Microsoft Press, 2000

• http://en.wikipedia.org/wiki/Operating_system
• http://en.wikipedia.org/wiki/Middleware
• http://en.wikipedia.org/wiki/Database_management_system (skim)
• http://en.wikipedia.org/wiki/Internet (skim)

Week 5 More systems, and languages and software engineering

 Compilers
 Software Engineering
 Mathematical thinking about grammar and semantics

Computation as understanding languages
Formal language design
Programs and proofs
Language design and implementation in practice

 and its convergence with theory

Reading
• Chapter 24 from Charles Petzold, Code: The Hidden Language of

Computer Hardware and Software, Microsoft Press, 2000
• History of Programming Languages (chart and content)

http://www.levenez.com/lang/ (skim)
• Programming Languages (Wikipedia article) :

http://en.wikipedia.org/wiki/Programming_language and
http://en.wikipedia.org/wiki/History_of_programming_languages (skim)

• Chapter 1, 2, 3, and 10 from Scott Rosenberg, Dreaming in Code: Two
Dozen Programmers, Three Years, 4732 Bugs, and One Quest for
Transcendent Software, Crown, 2007.

• “Programming Languages Explained”, Chapter 10 of Paul Graham,
Hackers and Painters, O’Reilly, 2004.

• http://en.wikipedia.org/wiki/Compiler

Week 6 Human Computer Interaction and Graphics

 Applied geometry on a computer
 Issues in interface design
 Psychology of using computers
 Where your PC came from, and where it might go…

EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 8 of 10

Videos

• SIGGRAPH Video Review, Issue 137, The Story of Computer Graphics,
Video, 1999. (We may watch in class)

• Doug Engelbart Demo.
http://sloan.stanford.edu/MouseSite/1968Demo.html (Watch on your
own – OK to skim)

• Alan Kay Video “Doing With Images Makes Symbols”:
http://video.google.com/videoplay?docid=-533537336174204822 (Watch
on your own – great history)

Reading
• Chapter 6 from Scott Rosenberg, Dreaming in Code: Two Dozen

Programmers, Three Years, 4732 Bugs, and One Quest for Transcendent
Software, Crown, 2007.

• “Taste For Makers”, Chapter 9 of Paul Graham, Hackers and Painters,
O’Reilly, 2004.

Week 7 Artificial Intelligence – Making minds and solving problems we don’t
know how to solve

 Turing test
 Are people fancy computers?
 Logic-based approaches
 Heuristic search
 Vision and image understanding
 Robotics
 Machine learning – statistics as if computers existed

Videos

• Koza Genetic Programming Example (In Class)
Reading

• Chapter 7 from David Harel, Computer Limited: What They Really Can’t
Do, Oxford University Press, 2000.

• Chapter 9 from Martin Davis, The Universal Computer: The Road from
Leibniz to Turing, W.W. Norton and Company, 2000.

• John McCarthy, “What is Artificial Intelligence?”, http://www-
formal.stanford.edu/jmc/whatisai/

• Chapters 2+5 (John Searle + Rebuttal) and Chapters 5+9 (Thomas Ray +
Rebuttal) : Selections from Ray Kurzweil, Are We Spiritual Spiritual
Machines? Ray Kurzweil vs. the Critics of Strong AI, Discovery Institute,
2002. Also available for free on Kurzweil’s site:
http://www.kurzweilai.net/
(http://www.kurzweilai.net/meme/frame.html?main=/meme/memelist.htm
l?m%3D19)

EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 9 of 10

Week 8 Security and a bit of Law and Politics

 Cryptography
 Cracking the uncrackable
 Secure protocols and their magic
 Intrusion detection

Reading
• Chapters 4,6,7 from Simon Singh, The Code Book: The Science of Secrecy

from Ancient Egypt to Quantum Cryptography, Anchor, 2000
• Chapter 6 from David Harel, Computer Limited: What They Really Can’t

Do, Oxford University Press, 2000.
• Tadayoshi Kohno, Adam Stubblefield, Aviel Rubin, and Dan Wallach,

Analysis of an Electronic Voting Machine, IEEE Symposium on Security
and Privacy, 2004. (available online. It is sufficient to skim this)

• Feldman, Halderman, and Felten, Security Analysis of the Dielbold
AccuVote-TR Voting Machine. (available at
http://itpolicy.princeton.edu/voting/ - it is sufficient to skim this)

Week 9 Politics, Law, Culture, Entrepreneurship

 Hacker culture
 Startup culture
 The Free Software and Open Source Movements
 Code as Law (ex: DRM)

Reading
• Essays 1 (“The GNU Project”), 2 (“The GNU Manifesto”), 4 (“Why

Software Should Not Have Owners”), and 16 (“The Danger of Software
Patents”) from Richard Stallman, Free Software, Free Society: Selected
Essays of Richard M. Stallman, Free Software Foundation, 2002. This
book is also available for free online at http://www.gnu.org/ (GNU Public
License)

• Chapter 1 (“Code is Law”), Chapter 3 (“Is-Ism: Is the Way it is the way it
must be?”), and Chapter 10 (“Intellectual Property”) in Lawrence Lessig,
Code: Version 2.0, Basic Books, 2006. This book is also available for free
online at http://codev2.cc/ (Creative Commons license)

• The Sony Root Kit Scandal:
http://en.wikipedia.org/wiki/2005_Sony_BMG_CD_copy_protection_scan
dal (Skim)

• Chapter 2 (“The Hacker Ethic”) from Steven Levy, Hackers: Heros of the
Computer Revolution, Penguin, 2001. [The Epilogue (“The Last
Hacker”) on Richard Stallman is also a good read]

EECS 101 Introduction to Computer Science Dinda, Spring, 2010

 Page 10 of 10

• Title essay from Eric Raymond, The Cathedral and the Bazaar: Musing
on Linux and Open Source by an Accidental Revolutionary, O’Reilly,
2001. Also mostly available for free from
http://www.catb.org/~esr/writings/cathedral-bazaar/

• “The Other Road Ahead” and “How To Make Wealth”, Chapters 5 and 6
of Paul Graham, Hackers and Painters, O’Reilly, 2004.

Week 10 The bleeding edge and crazy ideas / slack time
 Quantum computing
 Digital Physics

Biological computing with DNA
 Smart Dust
 More

Videos
• Play Conway’s Game of Life: http://www.bitstorm.org/gameoflife/

Reading
• Chapters 1 and 2 from Stephen Wolfram, A New Kind of Science,

Wolfram Media, 2002. This book is also available for free online at
http://www.wolframscience.com/

• Rule 110 (Wikipedia Article):
http://en.wikipedia.org/wiki/Rule_110_cellular_automaton

• Conway’s Game of Life
http://en.wikipedia.org/wiki/Conway's_Game_of_Life

• Nick Bostrom, Are You Living in a Computer Simulation?, Philosophical
Quarterly, Volume 53, Number 211, 2003. (Available online at
http://www.simulation-argument.com)

• Chapter 8 from Simon Singh, The Code Book: The Science of Secrecy
from Ancient Egypt to Quantum Cryptography, Anchor, 2000

• … More TBD depending on available time / slack

