
CS 343 Operating Systems, Winter 2020
Driver Lab: Interfacing with Hardware and the Rest of the Kernel

1 Introduction

The purpose of this lab is for you to engage with the challenges of device drivers. A device driver needs
to closely interact with specific hardware that is not a processor nor memory. At the same time, it needs to
provide a useful abstract interface for the rest of the kernel. Developing a driver is a relatively common task
in kernel development, and being able to design a good abstraction that can bridge the hardware/software
interface is a generally useful skill. You’ll work within the NK kernel, but what you’ll learn in developing
drivers and abstractions for NK will generalize to other kernels, notably Linux.

You will start by developing a very simple device driver for a very simple device (a parallel port), a
device driver that needs to interact with the kernel using an existing abstraction. Next, you will develop a
driver for a sophisticated device (a graphics processing unit or GPU), and design and possibly implement an
abstraction for similar devices.

You may work in a group of up to three people in this lab. Clarifications and revisions will be posted to
the course discussion group.

2 Setup

You can work on this lab on any modern Linux system, but our class server(s) have been specifically set up
for it.1 We will describe the details of how to access the lab repo via github classroom in lecture and on the
discussion group. You will use this information to clone the assignment repo using a command like this:

server> git clone [url]

This will give you the entire codebase and history of the Nautilus kernel framework (“NK”), just as in the
Getting Started Lab. As before, you may want to use chmod to control access to your directory.

Unlike the Getting Started Lab, the code for this lab is in a separate branch. You now need to get to the
relevant branch and configure it:

server> cd [assignment-directory]
server> git checkout driverlab
server> cp configs/cs343-driverlab-config .config

Now build it:
1For students who are using your own machine, the primary additional requirement in this lab compared to the Getting Started

Lab is that you have a modern version of QEMU, since older versions, including the default version that ships with Ubuntu, have
bugs in their support for the GPU device you will use in this lab. On the class servers, we have built QEMU 4.4.1 from scratch, and
validated that it works. If there is interest, we will describe how to build QEMU in the discussion group.
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server> make clean
server> make -j 8 isoimage

You will want to recall your setup from the Getting Started Lab for doing remote display. In this lab,
you will need to have remote display functional. You can now boot your kernel:

server> source ENV
server> ./run

The run command will execute the emulator (QEMU) with a set of options that will “install” both devices
this lab will use in the emulated machine. The emulated machine will boot NK, and if all is successful, you
will see a blue screen with a red prompt, just as in the Getting Started Lab. Remember that the shell you are
talking to is within the kernel itself.

3 Files

While NK is tiny compared to the Linux, Darwin, or Windows kernels, it does have several hundred thousand
lines of code spread over over more than a thousand files. Therefore it is important to focus on what
is important for your goals. As with any significant codebase, trying to grok the whole thing is either
impossible or will take far too long. Your strategy for approaching the code has to be adaptive. In part, we
are throwing you into this codebase to help you learn how to do this.

Here are some important files for this lab:

• include/dev/parport.h: stub header file for the simple driver. You may add code to this.

• src/dev/parport.c: stub source code for the simple driver (the parallel port). You will add code
to this.

• include/nautilus/chardev.h: header file describing the character device abstraction, which
your simple driver will provide.

• include/dev/virtio_gpu.h: stub header file for the complex driver (the GPU). You may add
code to this.

• src/dev/virtio_gpu.c: stub source code for the complex driver. You will add code to this.

• include/dev/virtio_pci.h: header file for the framework within which your complex driver
will fit. The framework solves many problems for you.

• src/arch/x64/init.c: the boot code that will instantiate your device drivers (you will not need
to change this file).

Additionally, you will add these files:

• include/nautilus/gpudev.h: This is where your abstraction for GPUs will go, similar to
how include/nautilus/chardev.h defines the abstraction for character devices.

• (optionally) src/nautilus/gpudev.c: This is where the implementation of your abstraction
will go, should you decide to do this extra credit.
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4 Devices, device drivers, and abstractions

Providing and managing access to hardware devices, particularly for I/O, is a core thing that any kernel does.
There are literally thousands of different devices in existence that can be attached to a modern x64 machine
through a wide range of buses and other mechanisms. A device driver is code within the kernel that provides
a software interface to a specific device. The device driver code does this by directly interacting with the
device hardware. The software interface provided by the driver is abstracted by the driver or other software
so that devices that are similar at the conceptual level can be treated the same by the rest of the kernel, even
if their device drivers are very different.

To make this more concrete, consider networking. The common Intel 82576 is a chip that implements a
gigabit Ethernet network interface. On a typical machine, the chip is likely placed somewhere on a PCIe bus
tree whose root is a processor. This means that in order to talk to it, we will also need to understand PCIe.
The 82576 is part of a large family of similar chips from Intel that have more or less the same programmatic
interface, an interface often called “e1000e”. If your kernel has an e1000e driver that can talk to such chips
over PCIe, you have the basic capability to send and receive Ethernet packets.

We could tell the same story about the common BCM5720 chip from Broadcom, its interface to PCIe,
its variants, and its “tigon3” programmatic interface. The tigon3 driver is quite different from the e1000e
driver, yet both are at heart about sending and receiving Ethernet packets. Do we really want the network
stack to actually differentiate sending an Ethernet packet via an e1000e, tigon3, or any of the other of the
dozens of kinds of Ethernet chips/boards?

Clearly that would be horrific. Instead, we implement an abstraction on top of the drivers. For example,
a general abstraction of sending/receiving Ethernet packets might be layered on top of all these drivers.
Then the network stack could use the abstraction instead of using the drivers directly. How to create a
useful, general, and widely-implementable abstraction is a challenge because part of any implementation of
the abstraction must span from software to hardware. We cannot change the hardware to suit the abstraction.

A device driver is very subtle code to write. In addition to the concurrency that we have seen before, we
now also need to worry about races and other interactions with a piece of hardware we do not fully control.
Devices are not processors, yet still can manipulate memory and timing, and typically produce interrupts
as well. Modern devices are often implemented to use ring buffers (similar to your previous lab), but now
either the producer or consumer is in the hardware of the device itself.

5 What a device does

A hardware device operates independently of the processor, but provides an interface that kernel code run-
ning on the processor (i.e., the device driver) can interact with. The interaction goes both ways.

5.1 Model and interface

We typically think of the device as comprising a state machine that is driven by events coming from the driver
and from internal and external sources. Typically, the device exposes some of its registers for manipulation
by the device driver. Note that these are at all not the same thing as the registers of the processor. In order
to read and write the device’s registers, they must be made visible to the processor. On x64, there are two
ways to do this:

• Port-mapped I/O (PMIO): Here, the registers are accessed via a special “I/O” address space using
special instructions called in and out instructions. The parallel port uses PMIO.
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• Memory-mapped I/O (MMIO): Here the registers are mapped into the regular physical memory ad-
dress space and are accessed via instructions like mov. However, because this “memory” is not real
memory (for example, it cannot be cached and reads/writes must not be reordered or discarded by
either the compiler or hardware), it is critical for the device driver author to understand how to get
exactly the memory operation behavior they want to see at the device. The GPU uses MMIO.

The hardware state machine can also create events for the processor. This is typically done by interrupts.
Interrupts force the processor to switch to kernel mode and start executing at a well-defined entry point,
typically in the device driver. Both of your devices raise interrupts.

We often want to transfer data from/to memory to/from the device. There are essentially two ways to do
this:

• Programmed I/O (PIO): Here the software (the device driver) reads/writes memory and writes/reads
a device register directly. The parallel port uses PIO.

• Direct Memory Access (DMA): Here the software (the device driver) tells the device where in physical
memory the data is coming from/going to (i.e., the software gives the hardware a pointer), and then
the device reads/writes memory accordingly. DMA is usually implemented as gather/scatter, meaning
that a single unit of data can be fragmented across multiple disjoint chunks in memory. The GPU uses
DMA.

On a sophisticated device, like the GPU, DMA is also used for more complex control of the device than
would be sensible using the registers alone. A common abstraction is a producer-consumer queue (usually
implemented as a ring buffer like in a previous lab) in which the producer or consumer is the hardware
device. Often, what is queued is a gather/scatter list for further DMA. The driver creates a higher-level
command by building a linked list in memory, then it queues a pointer to the head of this list in a ring
buffer. The device dequeues the pointer using DMA, and then uses DMA to walk to linked list to recover
the command. It then executes the command, which might involve further DMA, and might result in an
interrupt.

5.2 Lifetime

When the system is turned on, the device will start in a known initial or reset state. In this state, it is
essentially “off”, except for advertisement, in which it makes its existence visible by indicating where its
registers are mapped in memory or the I/O space. The device driver can then discover it, initialize it as
needed, and interact with it. If no device driver exists, the device remains “off”. We are ignoring other
aspects of modern devices here, such as sleep/resume and hot-plugging.

6 What a driver does

The purpose of a device driver is to make a hardware device useful. Typically, the combination of the driver
and the device implement an abstract interface within the kernel.

6.1 Lifetime

A device driver has the following lifetime.

• Discovery: The driver tries to find devices it is compatible with using device advertisements.
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• Initialization: The driver interacts with the device to place it into a suitable state for normal operation.

• Registration: The driver makes the device visible to the rest of the kernel through some abstract
interface.

• Operation: The driver manages requests coming from the rest of the kernel, and from the device, to
provide the service of the abstract interface to the rest of the kernel. This where the device driver
spends most of its time.

• Teardown: The driver gets the device back to its reset state and unregisters it from the abstract inter-
face.

Some devices or kernels will have additional elements, including Hot-plug (the user can install and remove
devices at will—think USB), and Sleep/Wake (the kernel can tell the driver to put the device and itself to
sleep sleep to save power).

The particulars of there steps are highly dependent on the device itself, as well as the abstract interface
the driver must provide to the rest of the kernel.

6.2 Driver frameworks

Many devices, even of radically different kinds, will share implementation commonalities beyond the very
low level ones described above. Kernels may provide factored driver frameworks to take advantage of this
commonality to reduce the amount of code that a driver author needs to write and debug. For example, the
GPU device you will be using in this lab is simultaneously a GPU device, a Virtio device, and a PCI device
with MSI-X interrupts. A great deal of the code for Virtio and PCI+MSI-X is just reused. What is new is
the “GPU” side.

7 Task 1: Parallel port character device driver

The simplest I/O device on a PC-derived machine is the “parallel port”. This still exists on all modern
machines, but there is typically no connector to attach anything to it. Fortunately, QEMU can easily connect
a parallel port to a terminal or file so we can see what it outputs. The concept of a parallel port is this: you
feed it a byte, and it outputs the 8 bits of the byte via 8 wires on the connector. If you want the attached
device to notice that the output byte has changed, you can also “strobe” a different wire to essentially “clock”
the data to the attached device. Technically, a parallel port can also input 8 bits at a time, but we will not use
that capability or other special features like EPP/ECP, nybble mode, etc.

In this lab, we will use only the legacy “first parallel port” (“LPT1”) that dates all the way back to the
first IBM PC from 1981 (where it was first used to connect to a printer, but soon was used almost like how
USB is used today). This first parallel port, if it exists, is at a well known place, which makes discovery
easy. We have constructed the discovery and initialization code for you.

The parallel port driver (include/dev/parport.h and src/dev/parport.c) is implemented
within NK’s character device abstraction (include/nautilus/chardev.h). The purpose is to show
you how a driver for a specific kind of device can fit within a more general abstraction, allowing the kernel
to use the driver without being aware of its internals.2 Later, we will ask you to design an abstraction for

2Another character device (or chardev) within NK is the serial port driver. A serial port does input/output a bit at at a time.
Using the NK shell command “chartest” you can do test I/O from/to any character device, including serial port and parallel port
devices.
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GPU devices.
The stub parallel port driver we have given you has detailed comments. We will only go through the

high level theory of operation of the parallel port device here. If you are reading the code, start with
nk_parport_init().

The parallel port device has three one-byte-wide registers (control, status, and data) that are used by the
driver to interact with it. These registers are accessed using PMIO as described earlier. The NK functions
inb() and outb() execute the relevant instructions.

As you can guess, the control registor allows us to configure and control the device. At startup, we
use this register to set the device into output mode, reset the attached “printer”, and arrange to have every
acknowledgement of the receipt of a byte by the printer to raise an interrupt that vectors to the handler within
the driver. That is, when the attached printer has the current byte you are sending to it, it will interrupt you
to let you know.

The status register provides considerable information, but the main thing we will care about is the busy
bit. If the printer is busy, we will wait for it before outputting the next byte to it. Note that for electronics-
level reasons, the busy bit is active low, meaning that true is represented by zero, while false is represented
by one. Several other bits in the control and status registers are similar.

When you write the data register, the device will output the byte written, while when you read it, it will
attempt to input data and give it to you. One of the bits on the control register determines the direction of
data flow that is enabled.3

We expect you to write the code necessary to allow the parallel port drive to successfully handle the use
of the chartest shell command for outputting data to the port: the status and write chardev interface
functions need to be functional. Your implementation should use interrupts instead of polling. To put this
into context, our implementation adds about 30 lines of code to the stub implementation you already have.

To write a byte, you will take the following steps:

1. Poll the status register, looking for the attached printer to be ready. When you implement interrupt
handling, this loop will execute only once.

2. Use the control register to set the device to output mode.

3. Write the data byte to the data register.

4. Strobe the attached printer. You will do this by setting and then resetting one of the bits in the control
register.

5. An interrupt will then occur when the attached printer has acknowledged your byte.

Timing is important on real hardware. This device is thousands of times slower than a processor. As a
consequence, it is often useful to insert delays. One function to do so is io_delay() , which is about a 1
microsecond delay.

To test your implementation, you will run NK using the run script. Then you will issue the command
chartest parport0 w 26 from the NK shell. If you are successful, the letters of the alphabet will
appear in the file parport.out.

3On the original parallel port hardware getting this wrong would damage the hardware or even start a fire. Sadly, this is not
possible with QEMU.
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8 Task 2: Virtio GPU device initialization and test

The goal of this part of the lab is to initialize a complex device, a GPU, and make it do something interesting.
You will configure the GPU to switch from text mode to 2D graphics mode, then draw something on the
screen, and finally switch back to text mode. You will do this during the kernel boot process because we do
not yet have an abstract interface for GPUs on which to base operation. You will design such an interface in
the next task.

The GPU you will target is a Virtio GPU device. Virtio is a widely-used interface standard for creating
paravirtualized devices within virtual machines monitors (like QEMU, KVM, Xen, VMware, Parallels,
VirtualBox, etc) and interfacing to such devices from a guest OS. The latter is what you are doing here. The
detailed Virtio specification, including for a wide range of device types is given elsewhere.4 DO NOT BE
DAUNTED. You will be working in our pre-existing frameworks for Virtio devices and PCI devices. There
are also two other Virtio drivers (for block devices (disks) and network devices) already in the codebase, and
we have provided you with stub code as the starting point for your vrtio-gpu driver. Finally, at this point, we
are not asking for you to develop a complete driver, but just to build just enough of a driver so you can draw
something on the screen.

While Virtio is an interface to virtual hardware, it is quite similar to the interfaces typically exposed by
modern physical hardware. What you will learn and be exposed to in this lab is widely applicable to most
devices today, particularly high throughput devices. If you’d like to look at the stub code, the place to start
is the virtio_gpu_init() function.

8.1 Understanding the device

The Virtio GPU device exposes its registers via MMIO. In the stub code, the common field within
struct virtio_pci_dev points to where they are mapped. We also provide atomic load and store
functions to interact with them. The more interesting thing about the Virtio GPU device is that it mainly
operates operates via DMA, both for any non-trivial command, and for data (the pixels that will appear on
the screen.

The following figure shows the high-level conceptual model of this device—how data flows from pixels
you draw in your program to pixels on the screen:

Framebuffer	
(Backing)

ScanoutResource

Physical	Memory
GPU	Rendering

Program	
+	Driver

Pixels DMA Flush

CPU	Rendering

User

Display

The system writes into a framebuffer (an array of pixels) located in normal memory. This framebuffer,
also called backing storage, is associated with a resource on the GPU. The GPU copies pixels from the
framebuffer to itself using DMA. It renders the pixels of the resource and makes them ready for display. The
display data is flushed to a “scanout”, which is an abstraction for a monitor. The scanout makes the rendered
screen of pixels visible to the user.5

To set up and trigger this pipeline from our driver, we need to issue requests to the device and receive
responses from it. This is also done via DMA using a general abstraction called a virtqueue. Virtqueues

4We are using the Virtio 1.1 specification, public review draft 01, dated December 20, 2018, https://docs.oasis-open.
org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html

5We are using this device in its simplest, unaccelerated 2D mode.
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are used by all the different Virtio devices—they are a common framework. Different Virtio devices differ
based on how many virtqueues they have and the specific requests that can be issued to them. For the Virtio
GPU device, one virtqueue is used for configuration and triggering of the pipeline, while a second virtqueue
(which we will not use) is for controlling a hardware mouse cursor that is overlaid on the screen.

The relationship of a request, response, and a virtqueue is shown here:

Virtqueue

Request	Fragment
Response	Fragment

Request	Fragment
Request	Fragment

Response	Fragment

Descriptor	ChainDescriptor

Request/Response

Descriptor	Array Available	Ring Used	Ring

Notify

Head

Tail

Notify

Head

Tail
Interrupt

To command the device to do something, we allocate both a request and a response. These can be fragmented
(and sometimes must be) across non-contiguous chunks of memory. We then fill out the request as needed
for the specific command we are sending to the device. At this point, we assemble the request and response
fragments into a linked list called a descriptor chain. Each node in this list is a descriptor—it describes
the fragment (its starting address, length, whether it is writeable, etc), and contains a pointer to the next
descriptor in the list. While request/response fragments are allocated in the ordinary way, descriptors are
allocated from a descriptor array, within the virtqueue itself. The descriptor chain is a scatter/gather list.

The virtqueue is the data structure that is shared with the hardware. We read/write it directly, while
the hardware reads/writes it using DMA. It has three components: the descriptor array we have previously
mentioned, the available ring, and the used ring. The available ring is a producer/consumer ring buffer in
which the driver is the producer and the device is the consumer. The used ring is a producer/consumer ring
buffer in which the device is the producer and the driver is the consumer.

We issue a command to the device by pushing a pointer to the head of the descriptor chain (the index of
the first descriptor in the chain) into the available ring, much as in the producer/consumer lab. But how does
the device know we did this? We write a special register called the notification register to inform the device
that we have changed the contents of the virtqueue.

At some point, the device pulls our descriptor chain pointer from the available ring via DMA, and
reads the descriptor chain via DMA. It next reads the request fragments, again with DMA, by walking the
descriptor chain. Now it has gathered our request, and it begins to execute it. When it is done, it writes the
response into the response fragments (scattering), again all with DMA. Next, it pushes the pointer to the
head of the descriptor chain (the index of the first descriptor) into the used ring (DMA again). This indicates
the command is complete. But how does the driver know of this push to the used ring? The device notifies
the driver by raising an interrupt, which simply indicates that the device has changed the virtqueue.

For the purposes of this lab, much of the required functionality in the driver, albeit with polling, has
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already been implemented for you. Please see the transact_rw() and transact_rrw() functions.
These implement request/response handling for 1 and 2 fragment requests with single fragment responses.

8.2 What to do

We have taken care of device discovery, virtqueue setup, interrupt setup, and even issued the first command
to the device to show you how this is done. You should look at the code in src/dev/virtio_gpu.c.
You will be adding to test_gpu(), which is copiously commented. You will also note that there are a
wide range of structure definitions (and declarations of requests and responses). Your goal here is to show
some sort of coherent image on the screen for a few seconds at boot time. Think of the Apple or Windows
boot screen for inspiration. The following are the conceptual steps you would take to do this:

1. Enumerate Displays: In this step, you would find all available scanouts (monitors) and pick one. This
step is already written for you.

2. Create Resource: Here you are asking the GPU to internally create a resource for rendering. This
resource will cover the entirety of the scanout you chose in the previous step. You will also need to
pick the pixel format for the resource.

3. Create Framebuffer: Here you would allocate space for the framebuffer you will be using. This step
is written for you.

4. Draw Image: Here you would fill out the framebuffer pixels with the image you want to put on the
screen.

5. Associate Resource and Framebuffer: In this step, you would tell the device that you want to create a
tie between the resource you created in step 2 and the framebuffer you allocated in step 3.

6. Associate Resource and Scanout: Here, you will command the device to make a connection between
the resource of step 2 and the display from step 1. At this point, you have assembled the pipeline
we saw earlier. Since the pipeline is now active, you will probably see the QEMU screen switch to
graphics mode and change size.

7. Transfer Pixels: Now you will command the device to transfer pixels from your framebuffer (step 3)
and its resource (step 2). More DMA!

8. Flush To Scanout: This command will tell the device to render from the resource (step 2) to the
monitor (step 1).

After these steps, your image should be visible. Note that the code we provide resets the GPU back to text
mode as the last thing it does. You probably want to introduce a delay loop so that you can appreciate your
displayed image for more than a split second.

9 Task 3: GPU device abstraction

It look a lot to get an image on the screen at boot time, but currently this is the only thing your driver can do.
Wouldn’t it be nice if code anywhere in the kernel could use your driver to do graphics whenever it would
like? It would be even better if it could use any graphics driver to do graphics without being concerned
about the details of the driver (or the device). You saw something similar in the first part of the lab, when
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you implemented your parallel port within NK’s character device abstraction and were able to use test code
(and even a shell command) that was totally independent of your driver. What is the right abstraction for
GPUs?

In addition to your new Virtio GPU driver, there is another simple graphics driver in NK, within the files
include/dev/vesa.h and src/dev/vesa.c. VESA is an ancient standard for extremely simple
GPUs that most hardware GPUs still sort of support. The model is quite simple: you can ask the GPU what
modes (resolution, color depth etc) it supports (on its single monitor). There are a range of standardized
modes. You can tell it to switch to the mode you want. Instead of having a separate resource and framebuffer
like the Virtio GPU, it has only a framebuffer. Furthermore, the framebuffer is on the GPU itself. To draw
on the screen, you ask the GPU for the physical address of the framebuffer, and then draw pixels directly
on it. These immediately are displayed by the attached monitor. NK’s VESA driver assumes only a single
VESA GPU is present and that it’s attached to a single monitor. You can see how the VESA driver is used
by looking at the vesa_test() function.

In addition to the character device abstraction from the first part of this lab, you area also welcome to
look at the block device (e.g. hard drives) and network device (e.g. Ethernet cards) abstractions in NK, these
are in include/nautilus/blkdev.h and include/nautilus/netdev.h.

9.1 What to do

Your goal is to design a GPU device abstraction that takes into account the differences between how dfferent
GPU devices operate or might operate. You can use the Virtio GPU device and the VESA GPU device
as examples. You can assume that we only care about unaccelerated 2D GPUs. The abstraction should
also take into account its user. How would you like to be be able to do graphics? For example, does the
vesa_draw_pixel() function make any sense? The abstraction must also take into account the burden
placed on the device driver author. We do not want to have a gloriously powerful abstraction that no one
can implement. You should also consider the difficulty of implementing the abstraction itself, independent
of the device drivers.

You will define your abstraction in a new file include/nautilus/gpudev.h. The definition
should mostly be comments that explain the theory of operation behind the abstraction for both the device
driver developer and the user of the abstraction. You can use the other abstraction header files as examples
of the level of detail we are expecting. Your header file should compile. We are not asking you to implement
your abstraction.

10 Grading

Your group should regularly push commits to github. You also should create a file named STATUS in which
you regularly document (and push) what is going on, todos, what is working, etc. Your commits are visible
to us, but not to anyone else outside of your group. The commits that we see up to deadline will constitute
your hand-in of the code. The STATUS file should, at that point, clearly document that state of your lab
(what works, what doesn’t, etc).

In addition to your STATUS file, you should regularly push your work within src/dev/parport.c,
src/dev/virtio_gpu.c, include/nautilus/gpudev.h and any other files you are changing.

Grading of this lab will be by interview and demo. After the deadline, the TAs will make arrangements
to talk to each group. The group will need to demo their drivers and answer questions about them, as well
as to answer questions about their proposed GPU abstraction.
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The breakdown in score will be as follows:

• 20% Task 1—Functional and sensible implementation of parallel port driver. It must pass chartest
write commands.

• 50% Task 2—Functional and sensible implementation of enough of the Virtio GPU driver to be able
to show images. The demonstration should show a boot splash screen for NK.

• 30% Task 3—Sensible and justified GPU device abstraction that can be compiled (it can fail to link).
Much of the value here is in the comments and thought process for your abstraction. There is no right
answer.

11 Extra Credit

We will allow up to 20% extra credit in this lab. If you would like to do extra credit, please complete the
main part of the lab first, then reach out to the instructor and TAs with a plan. Some possible extra credit
concepts are the following:

• Animate your splash screen. You can do this using a variety of methods. One is simply to change
the framebuffer, and then push the pixels through the pipeline using the commands you already have.
Another is to use hardware scrolling.

• Implement the hardware mouse cursor. VirtioGPU can give you control over the shape (image) of the
mouse cursor, and allow you to position it where you would like. Have the hardware mouse cursor
move around your screen.

• Implement your GPU device abstraction layer. You have definite it in your header file. Implement it!
You can add some shell commands to launch tests.

• Reimplement your Virtio GPU driver to conform to your GPU device abstraction layer instead of to
the generic device abstraction layer.

• Port a GUI to your driver or your abstraction layer. At some point, a port of µGUI was made to NK
for use with VESA. It is feasible to get it to work.
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