
CS 343 Operating Systems, Winter 2021
Getting Started Lab

1 Introduction

In this lab you will get, build, and run an operating system kernel, plus attach a remote debugger to it. This
lab must be done individually and slip days may not be used on it. Any clarifications or revisions will be
posted to Piazza.

The purpose of this tiny lab is to make sure that you have everything set up so that you can do class labs.
If you are having problems, please post questions to Piazza so we can assist you.

2 Task 1: Remote display

You can work on this lab on any modern Linux system, but we strongly suggest you do this lab on our class
server moore.wot.eecs.northwestern.edu first.1

We need you to have remote display capability from the server. There are several ways to do this,
including FastX2, VNC, or X11. We will post more details about this on Piazza. When you have this set up,
you’ll be able to do something like this:

client> ssh -Y you@server
server> emacs &

with the result that a new text editor window pops up on your client.
Note: in order for some of the following commands to execute properly, we assume you are using the

bash shell on the server. If you aren’t (and by default you are not), you can start it by running

server> bash

3 Task 2: Setup

We will describe the details of how to access the lab repo via Github classroom in lecture and on Piazza.
You will use this information to clone the assignment repo using a command like this:

server> git clone [url]

This will give you the entire codebase and history of the Nautilus kernel framework (“NK”). This is an
actively developed research tool among several institutions, including Northwestern.

1For students who definitely want to work on their own machines, we will give guidance on Piazza.
2This is the preferred way to set things up for this quarter. See http://it.eecs.northwestern.edu/info/2020/

09/14/info-labs-fastx.html

1

http://it.eecs.northwestern.edu/info/2020/09/14/info-labs-fastx.html
http://it.eecs.northwestern.edu/info/2020/09/14/info-labs-fastx.html


4 Task 3: Build it

To start, you will need to configure the kernel:

server> cd [assignment directory cloned from Github]
server> cp configs/cs343-base-config .config

To compile the kernel and produce a bootable disk, do the following in your assignment directory:

server> source ENV
server> make -j 8 isoimage

The end result of this should be a file nautilus.bin, which is the kernel, and nautilus.iso,
which is the bootable disk. Run these commands and capture the results (see Section 7):

server> ls -ltr | tail -5
server> md5sum nautilus.bin

5 Task 4: Run it

To run the kernel in emulation, execute:

server> source ENV
server> ./run

Note: if source ENV fails. You probably forgot to start a bash shell. See Section 2.
You should see a new window pop up, with content that looks like a computer booting. You will also

see a bunch of output (boot messages) show up in the terminal where you ran ./run.
Eventually, the new window will go blue and present you with a prompt that says root-shell> This

is the command prompt of an NK shell. Type the following commands:

root-shell> cpuid 0 3
root-shell> mem fd520 128

The first of these commands shows information about your processor. The second dumps out a part of the
system firmware (the BIOS). Save the results (you will see everything duplicated in the terminal, where it
is easy to copy and paste).

Feel free to play with it more. Type help to see commands. Note that this is not a Linux shell. This is
a minimal interactive interface that is running within NK. You can do anything with full privilege and very
easily nuke the kernel. Try int 0 23 for an easy panic.

6 Task 5: Run it with a debugger

In this final task, you will attach gdb to do remote debugging of the kernel. First, while gdb uses a default
port to attach its debugger to, if every student in the class uses the default port, they will all conflict with
each other and the operation will fail. In your assignment directory run:

server> ./mynumber_cs343.pl

2



That will provide you with a unique number N based on your username that you should use for the following
GDB commands.

Start NK using the run command. While in the blue window, type CTRL-ALT-2. This will switch to a
black screen with a (qemu) prompt. This is a command interface for the emulator on which the kernel is
running. Run

(qemu) gdbserver tcp::N

where N is your unique number. Now type CTRL-ALT-1. This will switch you back to the blue window
(NK). Now, in a separate window on the server, attach to it:

server> gdb nautilus.bin
(gdb) target remote localhost:N

where N is your unique number. Finally, run the following gdb commands and capture what they show:

(gdb) info threads
(gdb) bt
(gdb) x/s 0xfd7fd

The first command shows the hardware threads of the emulated environment on which the kernel is running.
The second shows the the stack trace for the currently selected hardware thread. The last command dumps
out memory at the given address as a string. This string is within the system firmware (BIOS).

7 Submission and grading

To hand in your work, create a file called STATUS in the repo you have checked out from Github classroom.
Place the outputs we told you to capture in Tasks 3, 4, and 5 into this file. Now add the file to your repo,
commit it, and push:

server> git add STATUS
server> git commit -m "Done!"
server> git push

That’s it! We will look at your STATUS file to confirm you’ve successfully completed these steps.
The purpose of this tiny lab is to make sure you have everything in place for future labs. We will help

you do this if you have issues. The grade for this tiny lab is therefore all-or-nothing.

3


	Introduction
	Task 1: Remote display
	Task 2: Setup
	Task 3: Build it
	Task 4: Run it
	Task 5: Run it with a debugger
	Submission and grading

