
CS 343 Queueing Theory / Scheduling Dinda

Queueing Theory and Scheduling

Scheduling in an operating system or elsewhere1 is a very interesting mix of complex
engineering and theory. The purpose of this document is to describe the basics of queueing
theory, which is a key approach to scheduling from a theoretical perspective, and to describe
some interesting results and scheduling disciplines beyond the ones noted in the textbook. The
workload characterization document should be read before or at least in tandem with this one---
scheduling is one area in which different workloads can lead to radically different results, even at
the theoretical level.

Queuing and scheduling theory is used in two ways. The first is to analyze an existing system
design and determine, ideally analytically, its performance characteristics. The second is to help
to design a new system, providing input in terms of its structure, the necessary capacity for the
parts of its structure, and how to schedule these elements.

Queueing and scheduling theory is an active area of research, both in terms of applying it to
solve systems, networking, and other problems, and in terms of making the theory itself more
capable of solving problems, in particular given workloads that better approximate reality.

Other fields, for example industrial engineering and operations research, are also important users
and contributors to queueing and scheduling theory. Indeed, these two fields are actually quite
older than computer science or engineering in their application and development of these
theories. In a lot of ways, a computer system has scheduling and structural problems like a "job
shop", assembly line, or factory, in these fields, but operates at warp speed.

We will draw on the treatment from Jain2, and Harchol-Balter3, both of which are great resources
(for different reasons), if you would like to learn more.

A Simple Queueing System
Below is perhaps simplest queueing system:

1 Scheduling is choosing what goes where when in order to optimize some objective function while obeying a set of
constraints. Since it is such a general problem, it occurs in all layers of system design, from microops within a
processor core to wide-area distributed systems. The focus in this document is on online scheduling, in which we
do not know about all the "whats" ahead of time.
2 Raj Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling, Wiley, 1991.
3 Mor Harchol-Balter, Performance Modeling and Design of Computer Systems: Queueing Theory in Action,
Cambridge, 2013.

Arriving	 Jobs

Queue Server

Completed	
Jobs

CS 343 Queueing Theory / Scheduling Dinda

Jobs (as described in the workload characterization document) are placed into the queue when
they arrive. The queue has infinite size. A scheduling policy or service discipline (not shown),
selects the next job from the queue that will advance to the server, and how long the job will run
on the server. Once the job is completed, it departs from the system. Here, "server" does not
mean a server computer, but rather any schedulable resource. In the context of a typical kernel,
a good example of a server is a CPU or hardware thread. Also, job is very broadly defined. In a
typical kernel, it might be a software thread's burst of computation between I/O operations.

M/M/1: Solving An Even Simpler Version of The Simple Queueing System
We are now going to sketch the analytic solution4 of the simple queueing system, under very
limiting assumptions, known as M/M/1. The "1" just means there is only one queue. We will
introduce general terminology as we go. Let's start by putting some more notation on the simple
queueing system:

The idea here is that jobs arrive at the queue at an arrival rate l - that is, there are l jobs per
second. The jobs arrive at random points in time, with the time between job arrivals being a
random variable selected from an exponential distribution. This is also called a Poisson arrival
process. Because the exponential distribution is memoryless, this forms part of a "Markovian
assumption"---it's also the first "M" in M/M/1. Each job will require that the server do work that
will take some time. This is the job's service time, Ts. Service times will also be drawn from an
exponential distribution---that's the second "M" in M/M/1. The mean of this distribution is the
mean service time. The reciprocal of the mean service time is the service rate, µ. We assume
here that the two rates are stationary, meaning they do not depend on time.

The system is fully parameterized by just these two exponential distributions.5 We will also
assume the service discipline is the simplest possible one: first-come-first-served (FCFS), also
called first-in-first-out (FIFO). Jobs are handled in the order in which they arrive. There is no
preemption, so once a job starts running on the server, it runs to completion and then leaves.

Let's draw an analogy with a grocery store checkout aisle. The jobs are customers ready to make
their purchases. The server is the cashier. The queue is the line of customers waiting for
checkout. The FCFS/FIFO discipline is exactly how the line and the cashier work---the
customers can't cut in line, and the cashier won't start working on the next customer's purchase
until they are done with the current customer's purchase. The arrival rate is the rate at which
customers show up and get in line. The service time is analogous to the how quickly the cashier

4 "Analytic solution" means we will derive closed form equations for values that we care about.
5 This is a major simplifying assumption about the workload that makes analytic solution of this problem very
tractable. In reality, many/most workloads do NOT conform to this assumption. Workload characterization is
essential to determining whether any statistical model is relevant.

l µ

CS 343 Queueing Theory / Scheduling Dinda

can check out the customer.6 The service rate is how many customers per second are checked
out.

A newly arriving job will have some number of jobs ahead of it. These jobs will delay the new
job. The amount of that delay is called the queueing delay of the job, Tq. The mean queueing
delay is the expected queueing delay seen by any new job. In the analogy, this is how long a
new customer can expect to wait before they are at the head of the grocery store checkout aisle.

The time from when a job arrives to when it is finished is the response time, Tr, which consists of
the queueing delay and the service time: Tr = Tq + Ts. We can also characterize the whole
system as having a mean response time, which is the expected time a new job spends in the
system. In the analogy, this is how long between when a new customer gets in line and when
they leave the store.

The load on the system is l/µ. If the load is greater than one, the server cannot keep up with the
incoming jobs, the number of jobs in the queue grows without bound, and the mean queuing
delay goes to infinity. This is an overload situation. If the load is much less than one, the server
can easily keep up, and there are few if any jobs in the queue. As the load approaches one from
below, the queue length grows, in fact, it will grow to infinity:

The queue length (or queue depth) is the number of jobs ahead of a new job that arrives in the
system. The more jobs ahead of the new job, the longer it will take for the new job to start
running, and the longer its response time. The load described here is over the very long term.
Transient overload is a different matter. You will often find the load measurements (which you
can see using, for example, the uptime, top, or htop commands) on a computer to be above 1.0
temporarily.

From the perspective of a job (a customer in the store), we clearly want to know the mean (or
expected) response time (how long the customer is likely to spend in the checkout line.) Little's
Law tells us this:

 mean response time = n / l

6 You might think this is a bit strange since customers have a widely varying number of items in their cart. Under
the exponential service time model, however, this is not really the case. That the exponential service time model
does not fit grocery store customers well is absolutely true.

load

qu
eu
e	
le
ng
th
	a
nd
	

re
sp
on
se
	ti
m
e

load=1.0

CS 343 Queueing Theory / Scheduling Dinda

Here l is the arrival rate, as before, while n is the average number of jobs in the system (or
customers in the checkout line in our analogy). Surprisingly, Little's Law is true under a wide
range of assumptions, not just the very restrictive set of assumptions we are considering.

So, to find the mean response time, we are left needing to find n, the expected queue depth. To
determine this, we need to know the probability distribution over queue depths. If we knew this,
we could compute n something like this:

 𝑛	 = 	 𝑖×𝑃[𝑞𝑢𝑒𝑢𝑒	𝑑𝑒𝑝𝑡ℎ	𝑖𝑠	𝑖]1

234 	

Now we need to determine the probability distribution. Here is where the Markovian stuff
really comes to play. Suppose the current queue depth is 5. It could next become 6 because of
a job arrival, or it could next become 4 because of a job completion. The next queue depth
depends only on the current queue depth. Furthermore, because of this direct dependence, we
can think of this problem is a Markov chain. Consider the following picture, ignoring the µs
and ls for the moment.

This a probabilistic state transition diagram. In the middle, we have the "2 jobs in queue" state.
Suppose we are in that state, and a brief interval of time passes. What could happen? With
some probability, we will transition to the "3 jobs" state. With some other probability, we will
transition into the "1 job in queue" state. With the remaining probability, we will stay in the "2
jobs in queue" state. These probabilities depend on µ and l, the service and arrival rates.

We are now going to do some hand-waving to argue that solving this is tractable (you can easily
find detailed descriptions of how this is solved in the referenced books), and skip to the solution:

 𝑃[𝑞𝑢𝑒𝑢𝑒	𝑑𝑒𝑝𝑡ℎ	𝑖𝑠	0] 	= 	1 − 8

9

 𝑃[𝑞𝑢𝑒𝑢𝑒	𝑑𝑒𝑝𝑡ℎ	𝑖𝑠	𝑖] 		= 8
9
×	𝑃[𝑞𝑢𝑒𝑢𝑒	𝑑𝑒𝑝𝑡ℎ	𝑖𝑠	𝑖 − 1]

 𝑃[𝑞𝑢𝑒𝑢𝑒	𝑑𝑒𝑝𝑡ℎ	𝑖𝑠	𝑖] 		= 8
9

2
×	𝑃[𝑞𝑢𝑒𝑢𝑒	𝑑𝑒𝑝𝑡ℎ	𝑖𝑠	0] 	= 	 8

9

2
1 − 8

9

The point here is that we have computed an analytic probability distribution over queue depths.

We can now use this distribution to determine n, the expected queue depth:

 𝑛	 = 	 8

9:8

0	jobs
in	queue

1	job	
in	queue

2 jobs	
in	queue

…
3	jobs4	jobs

l

µ

5	jobs
l

µ

l

µ

l

µ

l

µ

CS 343 Queueing Theory / Scheduling Dinda

Consider what this is saying: as the service and arrival rates get closer together, the expected
queue depth will get larger. As they get incrementally closer and closer, the expected queue
depth grows faster and faster. This gives the asymptote of the graph shown previously.

We also now get the mean response time, from Little's Law:

 𝑚𝑒𝑎𝑛	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑡𝑖𝑚𝑒	 = 	 8

9:8
	×	?

8
	= 	 ?

9:8

As you might expect, as the expected queue depth grows, so does the mean response time. The
closer we get to the load limit of 1.0, the more we see the mean response time explode
exponentially. This is one reason why systems are run with load kept to be a bit less than 1.0

It is important to remember that these results are true only in the very constrained M/M/1 case
we are considering. Finding analytic solutions/results in less constrained situations is a hot topic
of research.

It is also important to understand that this very constrained case, particularly the "M/M" part, is
much rarer in practice than might meet the eye. For example, you probably have the intuition
that a supermarket checkout line does not work as we have described. And you would be right.
In computer systems, simple measurements can be deceiving, suggesting that you have a
workload that might comply with this analysis, when it may not.

Finally, it is important to note that other objective functions than mean response time can be
considered when evaluating a system. For example, the slowdown of a job, or ratio of response
time to service time (Tr/Ts), and the mean slowdown, turn out to be quite important when more
naturally occurring workloads are considered. We also often care about the second moment
(variance) of response time and slowdown---a system with high variance is generally worse than
one with low variance. We occasionally also care about various metrics of fairness.

A Computer System as a Queueing Network
Beyond a single queue system, we can model a complete computer system, network, distributed
system, architecture, and many other things as a queueing network, which you can think of as
being analogous to an electrical circuit, where the components consist of queues, servers, and
links between them. Here is an example of a queueing network for jobs called transactions
running on a database computer that has one CPU and two disks:

CS 343 Queueing Theory / Scheduling Dinda

Here, the idea is that when a job (transaction) arrives, it first goes to the CPU queue. After it has
run for enough time on the CPU, it has 1/3 probability of finishing (exiting the system), 1/3
probability of moving to Disk 1's queue, and 1/3 probability of moving to Disk 2's queue. If it
moves to a disk queue, it will eventually be serviced by the disk, and then move back to the CPU
queue.

Similar to electrical circuit analysis, there are governing constraints (almost like Kirchoff's laws)
that let us derive a system of equations from the queueing network. We can then solve this
system of equations to produce analytical expressions for questions like "what is the expected
time for a job (transaction) to complete in this system?" The equations and the answers are
stochastic---this is a form of deriving and reasoning about the probabilistic properties of the
system.

As noted earlier, analytic solvability depends on the state of the art in analyzing probabilistic
systems and on the nature of the workload offered to the system. In many cases, although we
can write the system of equations, we cannot solve it analytically. There is still plenty of value
in thinking of the system using this kind of model, however. Even when it is not possible to
solve the system of equations analytically, we can try to solve them numerically. Even when
this is not feasible, we can simply use the queueing network as the basis for a simulation of the
system that can give us numbers.7

Service / Scheduling Disciplines
In the above, we used the FCFS (or FIFO) service or scheduling discipline. There are a wide
range of others to consider. What is being described here are theoretical models, which can be
used for analysis, numeric solution, or simulation. Actual scheduler implementations in a kernel
or elsewhere may approximate a theoretical model, but they are just that, approximations. There
are a lot of devils in the details. Also, many commonly used schedulers, such as those in many
production kernels, are not aligned with or inspired by a theoretical model at all.

An important thing to understand is that service or scheduling discipline generally has little
effect when the load is low. It is when the load approaches 1.0 (including transient overload)

7 Simulation is exactly what you will be doing in the Queueing Lab.

CS 343 Queueing Theory / Scheduling Dinda

that you typically see serious differentiation in the performance, in terms such as mean response
time, mean slowdown, fairness, and variation in these measures.

Shortest Job First (SJF) is the optimal nonpreemptive scheduling discipline for minimizing
response time. SJF requires you know the job size (service time), which is often not possible.

Shortest Remaining Processing Time (SRPT) is the preemptive variant of SJF and has similar
properties. In the "M/M" scheme above, SRPT and SJF can lead to starvation (job never runs),
but under the workload characteristics more commonly seen in nature, they do not. Similar to
SJF, SRPT requires knowing the job size, which is often not possible.

Fair Sojourn Protocol (FSP) arguably provides the optimality benefits of SRPT while having
better fairness characteristics.

Processor Sharing (PS) is the ultimate in fairness (well, depending on the definition of fairness).
The idea is that for any interval of time, not matter how small, the server is evenly split between
all the jobs in the queue. If there are n jobs in the queue, each one makes continuous steady
progress at a rate 1/n. This is what the practical "round-robin" scheduler approximates.

Generalized Processor Sharing (GPS) is Processor Sharing with weights or priorities. The idea
here is each job i is assigned a weight wi, and makes progress at a rate @A

@BB
. This is what a

practical scheduler with priorities, such as the Linux scheduler or a Lottery Scheduler typically
attempts to approximate.

Dynamic Priority has the model that each job has a priority, and the scheduler runs the job that
currently has the highest priority. The scheduler also changes job priority as it goes, based on
various events. For example, if the job has been running for a long time, its priority might
decline. Conversely, if a job has just arrived, or has just completed an I/O (such as a disk
request completing or the user providing input), it might get a priority boost.

In real-time systems, very different scheduling models are used. In a real-time system, each job
has a deadline by which it must be completed. When the job arrives at the system, it makes clear
its size (service time) and its deadline. The scheduler then applies an admission control
algorithm to determine whether it is feasible to meet the job's deadline while not missing any
deadlines of already accepted jobs. If yes, the scheduler accepts the job and commits to meet the
deadline. If no, the scheduler is allowed to reject the job.

To scheduler accepted jobs that include real-time jobs, a common scheduling model is the Fixed
Priority Scheduler. Here, the idea is that each accepted job has a priority. The scheduler is
committed to always be running the job that currently has the highest priority. When used in a
real-time system, we commonly consider the deadline as the priority, with earlier deadlines
having higher priority. When this is done, we typically refer to the scheduling discipline as
Earliest Deadline First (EDF), which is conveniently self-explanatory.

CS 343 Queueing Theory / Scheduling Dinda

Scheduler Code in NK and Linux
If you'd like to look at the codebase of a relatively complex scheduler, you can take a look at
include/nautilus/scheduler.h and src/nautilus/scheduler.c. The following complicated (sorry)
diagram shows what the scheduler within a single CPU (hardware thread) looks like:

This scheduler schedules threads.8 It is driven by events within threads such as calls to go to
sleep or to yield to a different thread, and also by interrupts. The scheduler is invoked on every
interrupt, but two particularly important sources of interrupts are local timer and companion
schedulers running on other CPUs.

The basic scheduling discipline is EDF (Earliest Deadline First) --- this is a hard real-time
scheduling model. The real-time threads are either sporadic (arrive once) or periodic (arrive
periodically). Of all the runnable real-time threads, the one with the earliest deadline is run. If
no real-time threads are runnable, the scheduler chooses a non-real-time thread (labeled
"aperiodic"). This choice is made by a scheduling discipline decided when the kernel is built.
Currently, the non-real-time scheduling disciplines that are available are round-robin (the
default), two dynamic priority options, and lottery scheduling.

Linux's default scheduler is called the Completely Fair Scheduler (CFS). You can read more
about it at https://en.wikipedia.org/wiki/Completely_Fair_Scheduler and the source code is in
kernel/sched within the Linux source tree.

8 This is a simplification. There are several other schedulable units in addition to threads, including tasks (shown on
the figure), and fibers (not shown). The scheduler can also steer interrupts to particular CPUs and particular times.

Hard Real-time Scheduling for Parallel Run-time Systems HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

APIC

One	Shot	
Timer

RT	Pending

RT	Run

Non-RT	Run

Pump

Eager
EDF

Arrivals

State
Update

Current
Thread Next

Thread

Processor	
Priority	
Interrupt	
Filtering

Scheduling	
Interrupts

From/To	Remote
Scheduler

From
Devices

Tasks
Execute
if	room

Known	Size

Task	Exec
Thread

Known/Unknown	Size

Idle	Thread
(opt.	Work	Stealer)

.	.	.

Aperiodic	
Threads

Stolen
Threads

Opt.	Interrupt
Thread

.	.	.

Periodic	and	Sporadic	
Threads	(EDF	order)

Thread-level

Scheduler-level
(Interrupts)

Hardware-level
(Timers	and	
Interrupt	Filtering)

Admission	Control
Utilization	Limit

Aperiodic	 Reservation
Sporadic	Reservation
Classic	 RMA/EDF

SMI

Missing
Time

Figure 2: The local scheduler is a tightly coupled eager earliest dead-
line �rst (EDF) engine with additional support for non-real-time
threads and tasks. Classic admission control approaches are used,
with reservations and utilization limits added to account for the
“missing time” of SMIs and scheduler overhead.

The following categories of timing constraints are observed:

• Aperiodic threads have no real-time constraints. They simply
have a priority, µ. Newly created threads begin their life in
this class.
• Periodic threads have the constraint (�,� ,�), which we refer
to as phase (�), period (�), and slice (�). Such a thread is
eligible to execute (it arrives) for the �rst time at wall clock
time � + �, then arrives again at � + � + � , � + � + 2� , and
so on. The time of the next arrival is the deadline for the
current arrival. On each arrival the task is guaranteed that it
will execute for at least � seconds before its next arrival (its
current deadline).
• Sporadic threads have the constraint (�,�,� ,µ) or phase (�),
size (�), deadline (�), and aperiodic priority (µ). A sporadic
thread arrives at wall clock time � + �, and is guaranteed to
execute for at least � seconds before the wall clock time �
(the deadline), and subsequently will execute as an aperiodic
thread with priority µ.

The scheduler also integrates support for �ner granularity tasks,
which have an even lower cost of creation, launching, and exiting
than Nautilus threads. These are essentially queued callbacks im-
plemented similarly to Linux’s softIRQs or Windows DPCs, with
an important exception in their processing. A task may be tagged
with its size (�). Size-tagged tasks can be executed directly by the
scheduler (like softIRQs/DPCs) until a periodic or sporadic task
arrives, but those without a size tag must be processed by a helper
thread. As a consequence, the timing constraints of periodic and
sporadic threads (e.g., the real-time threads) are not a�ected by
tasks, and indeed, such threads are not even delayed by tasks.

3.2 Admission control
Admission control in our system is done by the local scheduler, and
thus can occur simultaneously on each CPU in the system.

Aperiodic threads are always admitted. The particular meaning
of their priority µ depends on which non-real-time scheduling
model is selected when Nautilus is compiled.

Periodic and sporadic threads are admitted based on the classic
single CPU schemes for rate monotonic (RM) and earliest deadline
�rst (EDF) models [23]. Admission control runs in the context
of the thread requesting admission. As a consequence, the cost
of admission control need not be separately accounted for in its
e�ects on the already admitted threads. This potentially allows
more sophisticated admission control algorithms that can achieve
higher utilization. We developed one prototype that did admission
for a periodic thread-only model by simulating the local scheduler
for a hyperperiod, for example.

At boot time each local scheduler is con�gured with a utilization
limit as well as reservations for sporadic and aperiodic threads,
all expressed as percentages. The utilization limit leaves time for
the invocation of the local scheduler core itself in response to an
timer interrupt or a request from the current thread. It can also be
used for other interrupts and SMIs, as we describe below, but this
is usually not necessary. The sporadic reservation provides time
for handling spontaneously arriving sporadic threads, while the
aperiodic reservation leaves time for non-real-time threads and for
admission control processing.

3.3 Local scheduler and time
A local scheduler is invoked only on a timer interrupt, a kick inter-
rupt from a di�erent local scheduler, or by a small set of actions
the current thread can take, such as sleeping, waiting, exiting, and
changing constraints.

A local scheduler is, at its base, a simple earliest deadline �rst
(EDF) engine consisting of a pending queue, a real-time run queue,
and a non-real-time run queue. On entry, all newly arrived threads
are pumped from the pending queue into the real-time run queue.
Next, the state of the current thread is evaluated against the most
imminent periodic or sporadic thread in the real-time run queue. If
there is no thread on the real-time run queue, the highest priority
aperiodic thread in the non-real-time run queue is used. A context
switch immediately occurs if the selected thread is more important
than the current thread.

The maximum number of threads in the whole system is deter-
mined at compile time, each local scheduler uses �xed size priority
queues to implement the pending and real-time run queues, and
other state is also of �xed size. As a result, the time spent in a local
scheduler invocation is bounded. In other words, we can treat the
local scheduler invocation itself as having a �xed cost. Bounds are
also placed on the granularity and minimum size of the timing
constraints that threads can request, limiting the possible scheduler
invocation rate. Combining these limits allows us to account for
scheduler overhead in the utilization limit selected at boot time.

Unlike typical EDF schedulers, our local scheduler is eager: if
there is a real-time task that is runnable, we run it. We explain why
in Section 3.6.

