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Goals for lecture

* Lab four?
* Lab six
» Simulation of real-time operating systems

* Impact of modern architectural features
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Lab six

Develop priority-based cooperative scheduler for TinyOS that
keeps track of the percentage of idle time.

Develop a tree routing algorithm for the sensor network.

Send noise, light, and temperature data to a PPC, via the
network root.

Have motes respond to send audio samples and buzz
commands.

Play back or display this data on PPCs to verify the that the
system functions.
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Introduction

Real-Time Operating Systems are often used in embedded
systems.

They simplify use of hardware, ease management of multiple
tasks, and adhere to real-time constraints.

Power is important in many embedded systems with RTOSs.

RTOSs can consume significant amount of power.

They are re-used in many embedded systems.

They impact power consumed by application software.

RTOS power effects influence system-level design.

Homework index

1 Labsix . ... ... . 5
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Lab four

* Please email or hand in the write-up for lab assignment four

* Problems? See me.

— Will need everything from lab four working for lab six
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Outline

* Introduction

* Role of real-time OS in embedded system
* Related work and contributions

» Examples of energy optimization

* Simulation infrastructure

* Results

» Conclusions
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Introduction
e o T oae——
* Real Time Operating Systems important part of embedded
systems

— Abstraction of HW
— Resource management

— Meet real-time constraints
» Used in several low-power embedded systems
* Need for RTOS power analysis

— Significant power consumption

— Impacts application software power

— Re-used across several applications
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Simulated embedded system
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TCP example
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Straight-forward implementation Multi-task implementation
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ABS example
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Timer
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Related work and contributions

* Instruction level power analysis
V. Tiwari, S. Malik, A. Wolfe, and T.C. Lee, Int. Conf. VLSI
Design, 1996

» System-level power simulation
Y. Li and J. Henkel, Design Automation Conf., 1998

* MicroC/OS-II: J.J. Labrosse, R & D Books, Lawrence, KS, 1998

* Our work
— First step towards detailed power analysis of RTOS

— Applications: low-power RTOS, energy-efficient software
architecture, incorporate RTOS effects in system design
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Single task network interface

Procure Release
Get packet ::,Z’:;Fslﬁ; Ethernet Tr::;;etr Ethernet
controller P controller

Checksum computation
and output

Procuring Ethernet controller has high energy cost
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Multi-tasking network interface

Checksum
computation

Buffer
management

Procure. Release

Transfer
controller controller

RTOS power analysis used for process re-organization to reduce
energy
21% reduction in energy consumption. Similar power consumption.
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ABS example timing

Timerilllllllll

Brake
pedal

ABS i
process i

Wheel
sensor

Brake
action

Time



Straight-forward ABS implementation Periodically triggered ABS
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Periodically triggered ABS timing Selectively triggered ABS

Pedal Sense speed and

Timer ! — 2 A
i i [T pedal conditions
I N oo N
Br?’k? . H
edal
P | 0 . [HEE: Compute
IBEEEEEEEEE leration
¥ Sleep
ABS |
process
WA
Wheel N
sensor
Timer
Brake transition? Actuate brake
action
Y
Time
19 20

Selectively triggered ABS timing Power-optimized ABS example
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63% reduction in energy and power consumption
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Infrastructure Experimental results

Application
code

SPARCIite
compiler

Energy by call
tree position for

task A [l Application
,|0SSehedl]_ rraingy) 1100 [ Fioating-point
\‘" 1000 3000 [T initialization
m & Hossemo) 900 2750 :;g [ 'nput/output
800 2500 [ Interrupt
Energy _ 2250 :g [ ] Maitbox
SPARClite cache U (md) oo s 70 [ Memory
Cache t ﬂ 500 1500 60 [ Misc.
-‘ e I contraller 400 1250 50 [ Scheduling
model SPARCIlite ISS =1 S|
Instruction—level Energy by call 300 1323 :g Semaphore
UART energy model tree position for 200 500 2 Sleep
model I = B:jfs task B 100 250 . P Synchronization
Memory model  jd J:Ittemzzil 0 OES S5 ° B Tosk contel
Models for
T other oy e Nerp, A8, s, Meup, — Som,
s energy model 5 u x I’Ore




Experimental results — time Agent example
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Optimization effects Partial semaphore hierarchical results
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Energy per invocation for uC/OS-Il services Conclusions

Service ewé?én;m) ewg:glg]w]) * RTOS can significantly impact power
OSEventTaskRdy 18.02 20.03 . . o .
OSEventTaskWait 7.98 9.05 * RTOS power analysis can improve application software design
OSEventWaitListInit 20.43 21.16 o
0SInit 1727.70 1823.26 * Applications
0OSMboxCreate 27.51 28.82 .
0SMboxPend 7.07 82.91 - Low-power RTOS design
0SMboxPost 5.82 84.55 = .
OSMemCreate 19.40 19.75 — Energy-efficient software architecture
0SMemGet .64 .22 . ) .
OSMeemmIneit 267_641 287.47 — Consider RTOS effects during system design
0SMemPut 6.38 7.91
0SQInit 20.10 20.93
0SSched 6.96 52.34
0SSemCreate 27.87 29.04
0SSemPend 6.54 73.64
etc. etc. etc.
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Impact of modern architectural features Summary

Lo —— . ——— - - ] e o T oae——
* Memory hierarchy * Labs
* Bus protocols ISA vs. PCI * Simulation of real-time operating systems
* Pipelining * Impact of modern architectural features

» Superscalar execution
* SIMD
* VLIW
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