Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science
Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda

Office: L477 Tech 338, 1890 Maple Ave.

=k dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu
Phone: 467—-2298 467-7859

Webpage: http://ziyang.ece.northwestern.edu/EXTERNAL/realtime

- - -

1 Reading assignment (for next class)

=

Homework index

o

69

Goals for lecture

- - il — —

Handle a few administrative details
Form lab groups

Broad overview of real-time systems
Definitions that will come in handy later

Example of real-time sensor network

Administrative tasks

- = _— & e

* Backgrounds

e Question rule

o Office hours

Backgrounds

- - = - —

Lab teams had best be balanced (low-level vs. high-level
experience)

Name

Which are you better at?
— Low-level ANSI-C/assembly experience

— High-level object-oriented programming experience

What’s your major?

Question rule

- — s ——

* If something in lecture doesn’t make sense, please ask
* You're paying a huge amount of money for this

* Letting something important from lecture slip by for want of a
qguestion is like burning handfulls of money

Core course goal

— s ——

By the end of this course, we want you to
learn how to build real-time systems
and build a useful real-time sensor network.

Office hours

A - = _— e

* When shall | schedule my office hours?

Today's topics

Taxonomy of real-time systems
Optimization and costs
Definitions

Optimization formulation

Overview of primary areas of study within real-time systems

Taxonomy of real-time systems

do

10

Taxonomy of real-time systems

- - — — — —

11

Taxonomy of real-time systems

Unbounded
arrival interval

12

Taxonomy of real-time systems

—_ o — i g—
- il

13

Taxonomy of real-time systems

- - — _—— ——— —

14

Taxonomy of real-time systems

—_ o — i g—
- il

15

Taxonomy: Static

Task arrival times can be predicted.
Static (compile-time) analysis possible.

Allows good resource usage (low processor idle time
proportions).

Sometimes designers shoehorn dynamic problems into static
formulations allowing a good solution to the wrong problem.

16

Taxonomy: Dynamic

Task arrival times unpredictable.
Static (compile-time) analysis possible only for simple cases.

Even then, the portion of required processor utilization efficiency
goes to 0.693.

In many real systems, this is very difficult to apply in reality (more
on this later).

Use the right tools but don’t over-simplify, e.qg.,

We assume, without loss of generality, that all tasks are
independent.

If you do this people will make jokes about you.

17

Taxonomy: Soft real-time

- - — s ——

More slack in implementation
Timing may be suboptimal without being incorrect

Problem formulation can be much more complicated than hard
real-time

Two common (and one uncommon) methods of dealing with
non-trivial soft real-time system requirements
— Set somewhat loose hard timing constraints

— Informal design and testing

— Formulate as optimization problem

18

Taxonomy: Hard real-time

- - e e ———

* Difficult problem. Some timing constraints inflexible.

* Simplifies problem formulation.

19

Taxonomy: Periodic

- - e e ———

Each task (or group of tasks) executes repeatedly with a
particular period.

Allows some nice static analysis techniques to be used.
Matches characteristics of many real problems...

... and has little or no relationship with many others that
designers try to pretend are periodic.

20

Taxonomy: Periodic — Single-rate

- — —

One period in the system.
Simple.
Inflexible.

This is how a /ot of wireless sensor networks are implemented.

21

Taxonomy: Periodic — Multirate

el R

* Multiple periods.

* Can use notion of circular time to simplify static (compile-time)
schedule analysis E. L. Lawler and D. E. Wood,
“Branch-and-bound methods: A survey,” Operations Research,
pp. 699-719, July 1966.

* Co-prime periods leads to analysis problems.

22

Taxonomy: Periodic — Other

- — —

* |t is possible to have tasks with deadlines less than, equal to, or
greater than their periods.

* Results in multi-phase, circular-time schedules with multiple
concurrent task instances.

— If you ever need to deal with one of these, see me (take my
code). This class of scheduler is nasty to code.

23

Taxonomy: Aperiodic

Also called sporadic, asynchronous, or reactive
Implies dynamic
Bounded arrival time interval permits resource reservation

Unbounded arrival time interval impossible to deal with for any
resource-constrained system

24

= - = —

Task

Processor

Graph representations
Deadline violation

Cost functions

25

=

Definitions

A—

Definitions: Task

* Some operation that needs to be carried out
* Atomic completion: A task is all done or it isn't

* Non-atomic execution: A task may be interrupted and resumed

26

Definitions: Processor

- - il — —

Processors execute tasks

Distributed systems
— Contain multiple processors

— Inter-processor communication has impact on system
performance

— Communication is challenging to analyze
One processor type: Homogeneous system

Multiple processor types: Heterogeneous system

27

Task/processor relationship

. — —

WC exec time (s)

Tooth 7.7E-6

Road 330E-9

FIR 41E-6

Matrix 310E-3

/844 D Y
s 7295 "Ms
o) 9 V%
Osap P 10p, Mty
95\6. 44/7
e <
<

Relationship between tasks, processors, and costs
E.g., power consumption or worst-case execution time

28

Graph definitions

= - T —

+ Perlod 200 ms
N
3 kb Soft DL = 100 ms

3 kb

Hard DL = 150 ms

Y

Hard DL = 230 ms
* Set of vertices (V)— usually operations

* Set of edges (E)— directed or undirected relationships on vertex
pairs

28

Example graph classifications

e __ graph _ e
o0 ¥ N\ oo

/
LB tree_Jreconvergents

° ¥\ 2
¢ g
. N

30

Some graph uses

- - —_ -

Problem representations
Timing constraint specification
Resource binding

And many more. ..

31

A few basic graph algorlthms

+ Perlod 200 ms

/\

Soft DL =100 ms
3 kb

Hard DL =150 ms

Hard DL = 230 ms

32

e —

Depth-first search (DFS)
Breadth-first search (BFS)
* Topological sort

Minimal
(MST)

spanning

tree

Depth-first search (DFS) — Pre-order for trees

p— i — i -l am

33

Depth-first search (DFS) — Pre-order for trees

e E 3 o i — e i

34

Depth-first search (DFS) — Pre-order for trees

e e — ——— T— i e W am e £

35

Depth-first search (DFS) — Pre-order for trees

E

36

Depth-first search (DFS) — Pre-order for trees

5 R r— —— | — et
e r
- 1 =

37

Depth-first search (DFS) — Pre-order for trees

B E el - . — i - e - il

38

Depth-first search (DFS) — Pre-order for trees

EE g p— —— — e - i - il =

39

Depth-first search (DFS) — Pre-order for trees

il =

40

Breadth-first search (BFS) — Pre-order for trees

- — — — S i o —

41

Breadth-first search (BFS) — Pre-order for trees

e . o i — e = i

42

Breadth-first search (BFS) — Pre-order for trees

e e — ——— T— i e W am e £

43

Breadth-first search (BFS) — Pre-order for trees

44

Breadth-first search (BFS) — Pre-order for trees

45

Breadth-first search (BFS) — Pre-order for trees

B E el - . — i - e - il

46

Breadth-first search (BFS) — Pre-order for trees

B E el - . — i - i - e

47

Breadth-first search (BFS) — Pre-order for trees

il =

48

Topological sort

_— - - — T —

= .0

. \

Static timing analysis of data-dependent real-time systems

 Earliest finish time (EFT) * Latest finish time (LFT)
* Earliest start time (EST) e Latest start time (LST)

O(IVI+E])

49

Topological sort

_— - - — T —

= .0

. \

Static timing analysis of data-dependent real-time systems

 Earliest finish time (EFT) * Latest finish time (LFT)
* Earliest start time (EST) e Latest start time (LST)

O(IVI+E])

50

Topological sort

- - — T — L

= N .0

\

Static timing analysis of data-dependent real-time systems

 Earliest finish time (EFT) * Latest finish time (LFT)
* Earliest start time (EST) e Latest start time (LST)

O(IVI+E])

51

Topological sort

- i - — — e -

Static timing analysis of data-dependent real-time systems

 Earliest finish time (EFT) * Latest finish time (LFT)
* Earliest start time (EST) e Latest start time (LST)

O(IVI+E])

52

Topological sort

— - __e-.... — G .
T
. 2

Static timing analysis of data-dependent real-time systems

 Earliest finish time (EFT) * Latest finish time (LFT)
* Earliest start time (EST) e Latest start time (LST)

O(IVI+E])

53

Topological sort

/G\ .0

0-0-0

Static timing analysis of data-dependent real-time systems

 Earliest finish time (EFT) * Latest finish time (LFT)
* Earliest start time (EST) e Latest start time (LST)

O(IVI+E])

54

Topological sort

e - — — . — -

/G\ .0
-Q \

Static timing analysis of data-dependent real-time systems

 Earliest finish time (EFT) * Latest finish time (LFT)
* Earliest start time (EST) e Latest start time (LST)

O(IVI+E])

55

Topological sort

—— - — — o — il

/G\ .0
-0 \

Static timing analysis of data-dependent real-time systems

 Earliest finish time (EFT) * Latest finish time (LFT)
* Earliest start time (EST) e Latest start time (LST)

O(IVI+E])

56

Topological sort

—— - — — o — il

0 .0

. \
0-0 -0

Static timing analysis of data-dependent real-time systems

 Earliest finish time (EFT) * Latest finish time (LFT)
* Earliest start time (EST) e Latest start time (LST)

O(IVI+E])

57

Definition: Deadllne violation

. - "

+ Perlod 200 ms

/\

Soft DL =100 ms
3 kb

Hard DL =150 ms

Hard DL = 230 ms

58

Cost functions

- - = - e ——

* Mapping of real-time system design problem solution instance to
cost value

* |.e., allows price, or hard deadline violation, of a particular
multi-processor implementation to be determined

99

Back to real-time problem taxonomy:
Jagged edges

= - = —

* Some things dramatically complicate real-time scheduling

* These are horrific, especially when combined
— Data dependencies
— Unpredictability

— Distributed systems

e These are irksome
— Heterogeneous processors

— Preemption

60

Central areas of real-time study

- - i

Allocation, assignment and scheduling
Operating systems and scheduling
Distributed systems and scheduling

Scheduling is at the core or real-time systems study

61

Allocation, assignment and scheduling

- = - _— & - - i

How does one best

* Analyze problem instance specifications

— E.g., worst-case task execution time

Select (and build) hardware components

Select and produce software

Decide which processor will be used for each task

Determine the time(s) at which all tasks will execute

62

Allocation, assignment and scheduling

- = - _— & - - i

In order to efficiently and (when possible) optimally minimize

— Price, power consumption, soft deadline violations
Under hard timing constraints

Providing guarantees whenever possible

For all the different classes of real-time problem classes

This is what | did for a Ph.D.

63

Operating systems and scheduling

— —

How does one best design operating systems to

e Support sufficient detail in workload specification to allow good
control, e.g., over scheduling, without increasing design error rate

* Design operating system schedulers to support real-time
constraints?

e Support predictable costs for task and OS service execution

64

Distributed systems and scheduling

- e e ———

How does one best dynamically control
* The assignment of tasks to processing nodes...
e ... and their schedules

for systems in which computation nodes may be separated by vast
distances such that

* Task deadline violations are bounded (when possible)...
... and minimized when no bounds are possible

This is part of what Professor Dinda did for a Ph.D.

65

The value of formality: Optimization and costs

= - - e - -

The design of a real-time system is fundamentally a cost
optimization problem

Minimize costs under constraints while meeting functionality
requirements

— Slight abuse of notation here, functionality requirements are
actually just constraints

Why view problem in this manner?

Without having a concrete definition of the problem
— How is one to know if an answer is correct?

— More subtly, how is one to know if an answer is optimal?

66

Optimization

Thinking of a design problem in terms of optimization gives design
team members objective criterion by which to evaluate the impact of
a design change on quality.

 Still need to do a lot of hacking

* Know whether its taking you in a good direction

67

Summary

o - - — e

* Real-time systems taxonomy and overview
* Definitions

* Importance of problem formulation

68

Reading assignment (for next class)

- - - B —

 J.W.S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,
NJ, 2000

* Chapter 2

e Start on Chapter 3

69

