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Goals for lecture

• Sensor networks

• Finish overview of scheduling algorithms

• Mixing off-line and on-line

• Design a scheduling algorithm: DCP

– Will initially focus on static scheduling

• Useful properties of some off-line schedulers
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Lab two?

• Everybody able to finish?

• Any problems to warn classmates about?

• 18 motes should be arriving tomorrow

– No equipment sign-out required for next motes lab

• Linux vs. Windows development environments
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Sensor networks

• Gather information over wide region

• Frequently no infrastructure

• Battery-powered, wireless common

• Battery lifespan of central concern
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Low-power sensor networks

• Power consumption central concern in design

• Processor?

– RISC µ-controllers common

• Wireless protocol?

– Low data-rate, simple: Proprietary, Zigbee

• OS design?

– Static, eliminate context switches, compile-time analysis
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Low-power sensor networks

• Power consumption central concern in design

• Runtime environment?

– Avoid unnecessary dynamism

• Language?

– Compile-time analysis of everything practical
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Multi-rate tricks

• Contract deadline

– Usually safe

• Contract period

– Sometimes safe

• Consequences?
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Scheduling methods

• Clock

• Weighted round-robbin

• List scheduling

• Priority

– EDF, LST

– Slack

– Multiple costs
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Scheduling methods

• MILP

• Force-directed

• Frame-based

• PSGA
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Linear programming

• Minimize a linear equation subject to linear constraints

– In P

• Mixed integer linear programming: One or more variables

discrete

– NP-complete

• Many good solvers exist

• Don’t rebuild the wheel
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MILP scheduling

P the set of tasks

tmax maximum time

start(p, t) 1 if task p starts at time t, 0 otherwise

D the set of execution delays

E the set of precedence constraints

tstart (p) =
tmax

∑
t=0

t · start(p, t) the start time of p
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MILP scheduling

Each task has a unique start time

∀p∈P,

tmax

∑
t=0

start(p, t) = 1

Each task must satisfy its precedence constraints and timing delays

∀{pi, p j} ∈ E,

tmax

∑
t=0

tstart (pi) ≥ tstart (p j)+d j

Other constraints may exist

• Resource constraints

• Communication delay constraints
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MILP scheduling

• Too slow for large instances of NP-complete scheduling

problems

• Numerous optimization algorithms may be used for scheduling

• List scheduling is one popular solution

• Integrated solution to allocation/assignment/scheduling problem

possible

• Performance problems exist for this technique
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Force directed scheduling

• P. G. Paulin and J. P. Knight, “Force-directed scheduling for the

behavioral synthesis of ASICs,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, vol. 8, pp. 661–679,

June 1989

• Calculate EST and LST of each node

• Determine the force on each vertex at each time-step

• Force: Increase in probabilistic concurrency

– Self force

– Predecessor force

– Successor force
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Self force

Fi all slots in time frame for i

F ′
i all slots in new time frame for i

Dt probability density (sum) for slot t

δDt change in density (sum) for slot t resulting from scheduling

self force

A = ∑
t∈Fa

Dt ·δDt
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Predecessor and successor forces

pred all predecessors of node under consideration

succ all successors of node under consideration

predecessor force

B = ∑
b∈pred

∑
t∈Fb

Dt ·δDt

successor force

C = ∑
c∈succ

∑
t∈Fc

Dt ·δDt
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Intuition

total force: A+B+C

• Schedule operation and time slot with minimal total force

– Then recompute forces and schedule the next operation

• Attempt to balance concurrency during scheduling

23



Force directed scheduling
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Force directed scheduling

EST

LST

task duration
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Force directed scheduling
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Force directed scheduling

probabilistic
concurrency
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Force directed scheduling

probabilistic
concurrency

28



Force directed scheduling

• Limitations?

• What classes of problems may this be used on?
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Implementation: Frame-based scheduling

• Break schedule into (usually fixed) frames

• Large enough to hold a long job

– Avoid preemption

• Evenly divide hyperperiod

• Scheduler makes changes at frame start

• Network flow formulation for frame-based scheduling

• Could this be used for on-line scheduling?
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Problem space genetic algorithm

• Let’s finish off-line scheduling algorithm examples on a bizarre

example

• Use conventional scheduling algorithm

• Transform problem instance

• Solve

• Validate

• Evolve transformations
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Examples: Mixing on-line and off-line

• Book mixes off-line and on-line with little warning

• Be careful, actually different problem domains

• However, can be used together

• Superloop (cyclic executive) with non-critical tasks

• Slack stealing

• Processor-based partitioning
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Problem: Vehicle routing

• Low-price, slow, ARM-based system

• Long-term shortest path computation

• Greedy path calculation algorithm available, non-preemptable

• Don’t make the user wait

– Short-term next turn calculation

• 200 ms timer available
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Examples: Mixing on-line and off-line

• Slack stealing

• Processor-based partitioning
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Scheduling summary

• Scheduling is a huge area

• This lecture only introduced the problem and potential solutions

• Some scheduling problems are easy

• Most useful scheduling problems are hard

– Committing to decisions makes problems hard: Lookahead

required

– Interdependence between tasks and processors makes

problems hard

– On-line scheduling next Tuesday
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Bizarre scheduling idea

• Scheduling and validity checking algorithms considered so far

operate in time domain

• This is a somewhat strange idea

• Think about it and tell/email me if you have any thoughts on it

• Could one very quickly generate a high-quality real-time off-line

multi-rate periodic schedule by operating in the frequency

domain?

• If not, why not?

• What if the deadlines were soft?
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Reading assignment

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Read Chapter 7
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