
Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science

Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda
Office: L477 Tech 338, 1890 Maple Ave.
Email: dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu
Phone: 467–2298 467-7859
Webpage: http://ziyang.ece.northwestern.edu/EXTERNAL/realtime

1

Homework index

1 Bizarre scheduling idea 36

2 Reading assignment 37

2

Goals for lecture

• Sensor networks

• Finish overview of scheduling algorithms

• Mixing off-line and on-line

• Design a scheduling algorithm: DCP

– Will initially focus on static scheduling

• Useful properties of some off-line schedulers

3

Lab two?

• Everybody able to finish?

• Any problems to warn classmates about?

• 18 motes should be arriving tomorrow

– No equipment sign-out required for next motes lab

• Linux vs. Windows development environments

4

Sensor networks

• Gather information over wide region

• Frequently no infrastructure

• Battery-powered, wireless common

• Battery lifespan of central concern

5

Low-power sensor networks

• Power consumption central concern in design

• Processor?

– RISC µ-controllers common

• Wireless protocol?

– Low data-rate, simple: Proprietary, Zigbee

• OS design?

– Static, eliminate context switches, compile-time analysis

6

Low-power sensor networks

• Power consumption central concern in design

• Processor?

– RISC µ-controllers common

• Wireless protocol?

– Low data-rate, simple: Proprietary, Zigbee

• OS design?

– Static, eliminate context switches, compile-time analysis

7

Low-power sensor networks

• Power consumption central concern in design

• Processor?

– RISC µ-controllers common

• Wireless protocol?

– Low data-rate, simple: Proprietary, Zigbee

• OS design?

– Static, eliminate context switches, compile-time analysis

8

Low-power sensor networks

• Power consumption central concern in design

• Processor?

– RISC µ-controllers common

• Wireless protocol?

– Low data-rate, simple: Proprietary, Zigbee

• OS design?

– Static, eliminate context switches, compile-time analysis

9

Low-power sensor networks

• Power consumption central concern in design

• Runtime environment?

– Avoid unnecessary dynamism

• Language?

– Compile-time analysis of everything practical

10

Low-power sensor networks

• Power consumption central concern in design

• Runtime environment?

– Avoid unnecessary dynamism

• Language?

– Compile-time analysis of everything practical

11

Low-power sensor networks

• Power consumption central concern in design

• Runtime environment?

– Avoid unnecessary dynamism

• Language?

– Compile-time analysis of everything practical

12

Multi-rate tricks

• Contract deadline

– Usually safe

• Contract period

– Sometimes safe

• Consequences?

13

Scheduling methods

• Clock

• Weighted round-robbin

• List scheduling

• Priority

– EDF, LST

– Slack

– Multiple costs

14

Scheduling methods

• MILP

• Force-directed

• Frame-based

• PSGA

15

Linear programming

• Minimize a linear equation subject to linear constraints

– In P

• Mixed integer linear programming: One or more variables

discrete

– NP-complete

• Many good solvers exist

• Don’t rebuild the wheel

16

MILP scheduling

P the set of tasks

tmax maximum time

start(p, t) 1 if task p starts at time t, 0 otherwise

D the set of execution delays

E the set of precedence constraints

tstart (p) =
tmax

∑
t=0

t · start(p, t) the start time of p

17

MILP scheduling

Each task has a unique start time

∀p∈P,

tmax

∑
t=0

start(p, t) = 1

Each task must satisfy its precedence constraints and timing delays

∀{pi, p j} ∈ E,

tmax

∑
t=0

tstart (pi) ≥ tstart (p j)+d j

Other constraints may exist

• Resource constraints

• Communication delay constraints

18

MILP scheduling

• Too slow for large instances of NP-complete scheduling

problems

• Numerous optimization algorithms may be used for scheduling

• List scheduling is one popular solution

• Integrated solution to allocation/assignment/scheduling problem

possible

• Performance problems exist for this technique

19

Force directed scheduling

• P. G. Paulin and J. P. Knight, “Force-directed scheduling for the

behavioral synthesis of ASICs,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, vol. 8, pp. 661–679,

June 1989

• Calculate EST and LST of each node

• Determine the force on each vertex at each time-step

• Force: Increase in probabilistic concurrency

– Self force

– Predecessor force

– Successor force

20

Self force

Fi all slots in time frame for i

F ′
i all slots in new time frame for i

Dt probability density (sum) for slot t

δDt change in density (sum) for slot t resulting from scheduling

self force

A = ∑
t∈Fa

Dt ·δDt

21

Predecessor and successor forces

pred all predecessors of node under consideration

succ all successors of node under consideration

predecessor force

B = ∑
b∈pred

∑
t∈Fb

Dt ·δDt

successor force

C = ∑
c∈succ

∑
t∈Fc

Dt ·δDt

22

Intuition

total force: A+B+C

• Schedule operation and time slot with minimal total force

– Then recompute forces and schedule the next operation

• Attempt to balance concurrency during scheduling

23

Force directed scheduling

24

Force directed scheduling

EST

LST

task duration

25

Force directed scheduling

26

Force directed scheduling

probabilistic
concurrency

27

Force directed scheduling

probabilistic
concurrency

28

Force directed scheduling

• Limitations?

• What classes of problems may this be used on?

29

Implementation: Frame-based scheduling

• Break schedule into (usually fixed) frames

• Large enough to hold a long job

– Avoid preemption

• Evenly divide hyperperiod

• Scheduler makes changes at frame start

• Network flow formulation for frame-based scheduling

• Could this be used for on-line scheduling?

30

Problem space genetic algorithm

• Let’s finish off-line scheduling algorithm examples on a bizarre

example

• Use conventional scheduling algorithm

• Transform problem instance

• Solve

• Validate

• Evolve transformations

31

Examples: Mixing on-line and off-line

• Book mixes off-line and on-line with little warning

• Be careful, actually different problem domains

• However, can be used together

• Superloop (cyclic executive) with non-critical tasks

• Slack stealing

• Processor-based partitioning

32

Problem: Vehicle routing

• Low-price, slow, ARM-based system

• Long-term shortest path computation

• Greedy path calculation algorithm available, non-preemptable

• Don’t make the user wait

– Short-term next turn calculation

• 200 ms timer available

33

Examples: Mixing on-line and off-line

• Slack stealing

• Processor-based partitioning

34

Scheduling summary

• Scheduling is a huge area

• This lecture only introduced the problem and potential solutions

• Some scheduling problems are easy

• Most useful scheduling problems are hard

– Committing to decisions makes problems hard: Lookahead

required

– Interdependence between tasks and processors makes

problems hard

– On-line scheduling next Tuesday

35

Bizarre scheduling idea

• Scheduling and validity checking algorithms considered so far

operate in time domain

• This is a somewhat strange idea

• Think about it and tell/email me if you have any thoughts on it

• Could one very quickly generate a high-quality real-time off-line

multi-rate periodic schedule by operating in the frequency

domain?

• If not, why not?

• What if the deadlines were soft?

36

Reading assignment

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Read Chapter 7

37

