#### Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science

Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda

Office: L477 Tech 338, 1890 Maple Ave.

Email: dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu

Phone: 467–2298 467-7859

Webpage: http://ziyang.ece.northwestern.edu/EXTERNAL/realtime

# Homework index

| 1 | Reading assignment | ٠ | • |  |  | • |  |  | 29 |
|---|--------------------|---|---|--|--|---|--|--|----|
| 2 | Lab six            | _ |   |  |  |   |  |  | 32 |

#### Goals for lecture

- Lab four
- Example scheduling algorithm design problem
  - Will initially focus on static scheduling
- Real-time operating systems
- Comparison of on-line and off-line scheduling code

## Lab four

- Talk with Promi SD101
- Sample sound at 3 kHz
- Multihop

#### Example problem: Static scheduling

- What is an FPGA?
- Why should real-time systems designers care about them?
- Multiprocessor static scheduling
- No preemption
- No overhead for subsequent execution of tasks of same type
- High cost to change task type
- Scheduling algorithm?

# Problem: Uniprocessor independent task scheduling

- Problem
  - Independent tasks
  - Each has a period = hard deadline
  - Zero-cost preemption
- How to solve?

## Rate monotonic scheduling

#### Main idea

- 1973, Liu and Layland derived optimal scheduling algorithm(s) for this problem
- Schedule the job with the smallest period (period = deadline) first
- Analyzed worst-case behavior on any task set of size n
- Found utilization bound:  $U(n) = n \cdot (2^{1/n} 1)$
- 0.828 at n=2
- As  $n \to \infty$ ,  $U(n) \to \log 2 = 0.693$
- Result: For any problem instance, if a valid schedule is possible,
   the processor need never spend more than 71% of its time idle

## Optimality and utilization for limited case

- Simply periodic: All task periods are integer multiples of all lesser task periods
- In this case, RMS/DMS optimal with utilization 1
- However, this case rare in practice
- Remains feasible, with decreased utilization bound, for in-phase tasks with arbitrary periods

## Rate monotonic scheduling

- Constrained problem definition
- Over-allocation often results
- However, in practice utilization of 85%–90% common
  - Lose guarantee
- If phases known, can prove by generating instance

#### Critical instants

#### Main idea:

A job's critical instant a time at which all possible concurrent higher-priority jobs are also simultaneously released

Useful because it implies latest finish time

- Consider case in which no period exceeds twice the shortest period
- Find a pathological case
  - Utilization of 1 for some duration
  - Any decrease in period/deadline of longest-period task will cause deadline violations
  - Any increase in execution time will cause deadline violations

### RMS worst-case utilization

- In-phase
- $\forall_{k \text{ s.t. } 1 \leq k \leq n-1} : e_k = p_{k+1} p_k$
- $e_n = p_n 2 \cdot \sum_{k=1}^{n-1} e_k$

- See if there is a way to increase utilization while meeting all deadlines
- Increase execution time of high-priority task

$$-e'_i = p_{i+1} - p_i + \varepsilon = e_i + \varepsilon$$

- Must compensate by decreasing another execution time
- This always results in decreased utilization

$$-e'_k=e_k-\epsilon$$

$$-U'-U=\frac{e_i'}{p_i}+\frac{e_k'}{p_k}-\frac{e_i}{p_i}-\frac{e_k}{p_k}=\frac{\varepsilon}{p_i}-\frac{\varepsilon}{p_k}$$

- Note that 
$$p_i < p_k \rightarrow U' > U$$

Same true if execution time of high-priority task reduced

• 
$$e_i^{\prime\prime} = p_{i+1} - p_i - \varepsilon$$

- In this case, must increase other e or leave idle for  $2 \cdot \varepsilon$
- $e_k'' = e_k + 2\varepsilon$
- $U'' U = \frac{2\varepsilon}{p_k} \frac{\varepsilon}{p_i}$
- Again,  $p_k < 2 \rightarrow U'' > U$
- Sum over execution time/period ratios

- Get utilization as a function of adjacent task ratios
- Substitute execution times into  $\sum_{k=1}^{n} \frac{e_k}{p_k}$
- Find minimum
- Extend to cases in which  $p_n > 2 \cdot p_k$

### Notes on RMS

- Other abbreviations exist (RMA)
- DMS better than or equal RMA when deadline  $\neq$  period
- Why not use slack-based?
- What happens if resources are under-allocated and a deadline is missed?

#### Essential features of RTOSs

- Provides real-time scheduling algorithms or primatives
- Bounded execution time for OS services
  - Usually implies preemptive kernel
  - E.g., linux can spend milliseconds handling interrupts, especially disk access

### Threads

- Threads vs. processes: Shared vs. unshared resources
- OS impact: Windows vs. Linux
- Hardware impact: MMU

## Threads vs. processes

- Threads: Low context switch overhead
- Threads: Sometimes the only real option, depending on hardware
- Processes: Safer, when hardware provides support
- Processes: Can have better performance when IPC limited

# Software implementation of schedulers

- TinyOS
- Light-weight threading executive
- *μ*C/OS-II
- Linux
- Static list scheduler

# **TinyOS**

- Most behavior event-driven
- High rate → Livelock
- Research schedulers exist

### BD threads

- Brian Dean: Microcontroller hacker
- Simple priority-based thread scheduling executive
- Tiny footprint (fine for AVR)
- Low overhead
- No MMU requirements

# μC/OS-II

- Similar to BD threads
- More flexible
- Bigger footprint

## Old linux scheduler

- Single run queue
- O(n) scheduling operation
- Allows dynamic goodness function

# O(1) scheduler in Linux 2.6

- Written by Ingo Molnar
- Splits run queue into two queues prioritized by goodness
- Requires static goodness function
  - No reliance on running process
- Compatible with preemptible kernel

#### Real-time linux

- Run linux as process under real-time executive
- Complicated programming model
- RTAI (Real-Time Application Interface) attempts to simplify
  - Colleagues still have problems at > 18 kHz control period

# Real-time operating systems

- Embedded vs. real-time
- Dynamic memory allocation
- Schedulers: General-purpose vs. real-time
- Timers and clocks: Relationship with HW

# Summary

- Static scheduling
- Example of utilization bound proof
- Introduction to real-time operating systems

## Reading assignment

- Read Chapter 12 in J. W. S. Liu, Real-Time Systems.
   Prentice-Hall, Englewood Cliffs, NJ, 2000
- Read K. Ghosh, B. Mukherjee, and K. Schwan, "A survey of real-time operating systems," tech. rep., College of Computing, Georgia Institute of Technology, Feb. 1994

### Goals for lecture

- Lab four?
- Lab six
- Simulation of real-time operating systems
- Impact of modern architectural features

#### Lab four

- Please email or hand in the write-up for lab assignment four
- Problems? See me.
  - Will need everything from lab four working for lab six

#### Lab six

- Develop priority-based cooperative scheduler for TinyOS that keeps track of the percentage of idle time.
- Develop a tree routing algorithm for the sensor network.
- Send noise, light, and temperature data to a PPC, via the network root.
- Have motes respond to send audio samples and buzz commands.
- Play back or display this data on PPCs to verify the that the system functions.

#### Outline

- Introduction
- Role of real-time OS in embedded system
- Related work and contributions
- Examples of energy optimization
- Simulation infrastructure
- Results
- Conclusions

#### Introduction

- Real-Time Operating Systems are often used in embedded systems.
- They simplify use of hardware, ease management of multiple tasks, and adhere to real-time constraints.
- Power is important in many embedded systems with RTOSs.
- RTOSs can consume significant amount of power.
- They are re-used in many embedded systems.
- They impact power consumed by application software.
- RTOS power effects influence system-level design.

#### Introduction

- Real Time Operating Systems important part of embedded systems
  - Abstraction of HW
  - Resource management
  - Meet real-time constraints
- Used in several low-power embedded systems
- Need for RTOS power analysis
  - Significant power consumption
  - Impacts application software power
  - Re-used across several applications

# Role of RTOS in embedded system



### Related work and contributions

### Instruction level power analysis

V. Tiwari, S. Malik, A. Wolfe, and T.C. Lee, Int. Conf. VLSI Design, 1996

### System-level power simulation

Y. Li and J. Henkel, Design Automation Conf., 1998

• MicroC/OS-II: J.J. Labrosse, R & D Books, Lawrence, KS, 1998

#### Our work

- First step towards detailed power analysis of RTOS
- Applications: low-power RTOS, energy-efficient software architecture, incorporate RTOS effects in system design

### Simulated embedded system



- Easy to add new devices
- Cycle-accurate model
- Fujitsu board support library used in model
- μC/OS-II RTOS used

## Single task network interface



Checksum computation and output

Procuring Ethernet controller has high energy cost

# TCP example



Straight-forward implementation



Multi-task implementation

### Multi-tasking network interface



RTOS power analysis used for process re-organization to reduce energy

21% reduction in energy consumption. Similar power consumption.

### ABS example



# ABS example timing



# Straight-forward ABS implementation





## Periodically triggered ABS



# Periodically triggered ABS timing



# Selectively triggered ABS



# Selectively triggered ABS timing



63% reduction in energy and power consumption

# Power-optimized ABS example





### Infrastructure



## Experimental results



### Experimental results – time



# Agent example



## Experimental results



# Experimental results



### Optimization effects

#### TCP example:

- 20.5% energy reduction
- 0.2% power reduction
- RTOS directly accounted for 1% of system energy

#### ABS example:

- 63% energy reduction
- 63% power reduction
- RTOS directly accounted for 50% of system energy

Mailbox example: RTOS directly accounted for 99% of system energy

Semaphore example: RTOS directly accounted for 98.7% of system energy

### Partial semaphore hierarchical results

|                 |                         | Function         | Energy/invocation (uJ) | Energy (%) | Time (mS) | Calls |
|-----------------|-------------------------|------------------|------------------------|------------|-----------|-------|
| realstart       | init_tvecs              |                  | 0.41                   | 0.00       | 0.00      | 1     |
| 6.41 mJ total   | init_timer              | liteled          | 1.31                   | 0.00       | 0.00      | 1     |
| 2.02 %          | 5.51 mJ total           |                  |                        |            |           |       |
|                 | 1.74 %                  |                  |                        |            |           |       |
|                 | startup                 | do_main          | 887.44                 | 0.28       | 2.18      | 1     |
|                 | 0.90 mJ total           | save_data        | 1.56                   | 0.00       | 0.00      | 1     |
|                 | 0.28 %                  | init_data        | 1.31                   | 0.00       | 0.00      | 1     |
|                 |                         | init_bss         | 0.88                   | 0.00       | 0.00      | 1     |
|                 |                         | cache_on         | 2.72                   | 0.00       | 0.01      | 1     |
| Task1           | win_unf_trap            |                  | 1.90                   | 1.20       | 9.73      | 1999  |
| 155.18 mJ total | _OSDisableInt           |                  | 0.29                   | 0.09       | 0.78      | 1000  |
| 48.88 %         | _OSEnableInt            |                  | 0.32                   | 0.10       | 0.89      | 1000  |
|                 | sparcsim_terminate      |                  | 0.75                   | 0.00       | 0.00      | 1     |
|                 | OSSemPend               | win_unf_trap     | 2.48                   | 0.78       | 6.33      | 999   |
|                 | 31.18 mJ total          | _OSDisableInt    | 0.29                   | 0.18       | 1.59      | 1999  |
|                 | 9.82 %                  | _OSEnableInt     | 0.29                   | 0.18       | 1.59      | 1999  |
|                 |                         | OSEventTaskWait  | 3.76                   | 1.18       | 9.22      | 999   |
|                 |                         | OSSched          | 19.07                  | 6.00       | 47.97     | 999   |
|                 | OSSemPost               | _OSDisableInt    | 0.29                   | 0.09       | 0.78      | 1000  |
|                 | 2.90 mJ total<br>0.91 % | _OSEnableInt     | 0.29                   | 0.09       | 0.78      | 1000  |
|                 | OSTimeGet               | _OSDisableInt    | 0.27                   | 0.08       | 0.70      | 1000  |
|                 | 1.43 mJ total           | _OSEnableInt     | 0.29                   | 0.09       | 0.78      | 1000  |
|                 | 0.45 %                  |                  | 2.22                   |            |           |       |
|                 | CPUInit                 | BSPInit          | 1.09                   | 0.00       | 0.00      | 1     |
|                 | 0.09 mJ total           | exceptionHandler | 4.77                   | 0.02       | 0.17      | 15    |
|                 | 0.03 %                  |                  |                        |            |           |       |
|                 | printf                  | win_unf_trap     | 2.05                   | 0.65       | 5.06      | 1000  |
|                 | 112.90 mJ total         | vfprintf         | 108.89                 | 34.30      | 258.53    | 1000  |
|                 | 35.56 %                 |                  |                        |            |           |       |

### Energy per invocation for $\mu$ C/OS-II services

| Service             | Minimum<br>energy ( $\mu$ J) | Maximum<br>energy (μJ) |
|---------------------|------------------------------|------------------------|
| OSEventTaskRdy      | 18.02                        | 20.03                  |
| OSEventTaskWait     | 7.98                         | 9.05                   |
| OSEventWaitListInit | 20.43                        | 21.16                  |
| OSInit              | 1727.70                      | 1823.26                |
| OSMboxCreate        | 27.51                        | 28.82                  |
| OSMboxPend          | 7.07                         | 82.91                  |
| OSMboxPost          | 5.82                         | 84.55                  |
| OSMemCreate         | 19.40                        | 19.75                  |
| OSMemGet            | 6.64                         | 8.22                   |
| OSMemInit           | 27.41                        | 27.47                  |
| OSMemPut            | 6.38                         | 7.91                   |
| OSQInit             | 20.10                        | 20.93                  |
| OSŜched             | 6.96                         | 52.34                  |
| OSSemCreate         | 27.87                        | 29.04                  |
| OSSemPend           | 6.54                         | 73.64                  |
| etc.                | etc.                         | etc.                   |

### Conclusions

- RTOS can significantly impact power
- RTOS power analysis can improve application software design
- Applications
  - Low-power RTOS design
  - Energy-efficient software architecture
  - Consider RTOS effects during system design

# Impact of modern architectural features

- Memory hierarchy
- Bus protocols ISA vs. PCI
- Pipelining
- Superscalar execution
- SIMD
- VLIW

# Summary

- Labs
- Simulation of real-time operating systems
- Impact of modern architectural features