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Goals for lecture
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Lab four

Example scheduling algorithm design problem

— Will initially focus on static scheduling
Real-time operating systems

Comparison of on-line and off-line scheduling code



Lab four
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e Talk with Promi SD101
e Sample sound at 3kHz

* Multihop



Example problem: Static scheduling
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What is an FPGA?

Why should real-time systems designers care about them?
Multiprocessor static scheduling

No preemption

No overhead for subsequent execution of tasks of same type
High cost to change task type

Scheduling algorithm?



Problem: Uniprocessor independent task
scheduling
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* Problem
— Independent tasks
— Each has a period = hard deadline

— Zero-cost preemption

e How to solve?



Rate monotonic scheduling
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Main idea

* 1973, Liu and Layland derived optimal scheduling algorithm(s) for
this problem

Schedule the job with the smallest period (period = deadline) first

Analyzed worst-case behavior on any task set of size n

Found utilization bound: U (n) =n- (2'/" — 1)

0.828 atn =2

Asn — o, U(n) — log2 = 0.693

Result: For any problem instance, if a valid schedule is possible,
the processor need never spend more than 71% of its time idle
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Optimality and utilization for limited case
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* Simply periodic: All task periods are integer multiples of all lesser
task periods

In this case, RMS/DMS optimal with utilization 1

However, this case rare in practice

Remains feasible, with decreased utilization bound, for in-phase
tasks with arbitrary periods



Rate monotonic scheduling
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Constrained problem definition
Over-allocation often results

However, in practice utilization of 85%—90% common

— Lose guarantee

If phases known, can prove by generating instance



Critical instants
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Main idea:

A job’s critical instant a time at which all possible concurrent
higher-priority jobs are also simultaneously released

Useful because it implies latest finish time
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Proof sketch for RMS utilization bound
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* Consider case in which no period exceeds twice the shortest
period

* Find a pathological case
— Utilization of 1 for some duration

— Any decrease in period/deadline of longest-period task will
cause deadline violations

— Any increase in execution time will cause deadline violations
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RMS worst-case utilization
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* In-phase
* Vist 1<k<n—1: €k = Dk+1 — Dk

n—1
* én an—Z'Zkzlek
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Proof sketch for RMS utilization bound
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See if there is a way to increase utilization while meeting all
deadlines

Increase execution time of high-priority task
- ¢;=piy1 —pitE€=¢;+E
Must compensate by decreasing another execution time

This always results in decreased utilization

— e, =ep—¢€
— U — :e_;_|_i 4 er __ € £
pi ' Pk pPi Pk Pi Dk

— Note that p; < py — U’ > U
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Proof sketch for RMS utilization bound
e Same true if execution time of high-priority task reduced

* e =pit1—pi—¢€

* |n this case, must increase other e or leave idle for 2 - €

* ¢ =ex+2¢

YN
l

« Again, py <2 —U">U

* Sum over execution time/period ratios
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Proof sketch for RMS utilization bound

Get utilization as a function of adjacent task ratios

Substitute execution times into ) ;' %

Find minimum

Extend to cases in which p,, > 2 p;
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Notes on RMS
Other abbreviations exist (RMA)
DMS better than or equal RMA when deadline # period

Why not use slack-based?

What happens if resources are under-allocated and a deadline is
missed?
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Essential features of RTOSs
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* Provides real-time scheduling algorithms or primatives

 Bounded execution time for OS services
— Usually implies preemptive kernel

— E.g., linux can spend milliseconds handling interrupts,
especially disk access
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Threads
* Threads vs. processes: Shared vs. unshared resources

e OS impact: Windows vs. Linux

* Hardware impact: MMU
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Threads vs. processes
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Threads: Low context switch overhead

Threads: Sometimes the only real option, depending on
hardware

Processes: Safer, when hardware provides support

Processes: Can have better performance when IPC limited
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Software implementation of schedulers
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* TinyOS

* Light-weight threading executive
¢ uC/OS-Il

* Linux

e Static list scheduler
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TinyOS

e Most behavior event-driven
* High rate — Livelock

e Research schedulers exist
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BD threads
Brian Dean: Microcontroller hacker
Simple priority-based thread scheduling executive
Tiny footprint (fine for AVR)

Low overhead

No MMU requirements
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uG/OS-l

e Similar to BD threads
 More flexible

* Bigger footprint
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Old linux scheduler
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* Single run queue
* O (n) scheduling operation

* Allows dynamic goodness function
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O (1) scheduler in Linux 2.6
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Written by Ingo Molnar

Splits run queue into two queues prioritized by goodness

Requires static goodness function

— No reliance on running process

Compatible with preemptible kernel
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Real-time linux
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* Run linux as process under real-time executive
* Complicated programming model

* RTAI (Real-Time Application Interface) attempts to simplify

— Colleagues still have problems at > 18 kHz control period
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Real-time operating systems
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Embedded vs. real-time
Dynamic memory allocation
Schedulers: General-purpose vs. real-time

Timers and clocks: Relationship with HW
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Summary
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 Static scheduling
* Example of utilization bound proof

* Introduction to real-time operating systems
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Reading assignment

* Read Chapter 12 in J. W. S. Liu, Real-Time Systems.
Prentice-Hall, Englewood Cliffs, NJ, 2000

* Read K. Ghosh, B. Mukherjee, and K. Schwan, “A survey of
real-time operating systems,” tech. rep., College of Computing,
Georgia Institute of Technology, Feb. 1994
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Goals for lecture
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Lab four?
Lab six
Simulation of real-time operating systems

Impact of modern architectural features
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Lab four
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* Please email or hand in the write-up for lab assignment four

* Problems? See me.

— Will need everything from lab four working for lab six
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Lab six

Develop priority-based cooperative scheduler for TinyOS that
keeps track of the percentage of idle time.

Develop a tree routing algorithm for the sensor network.

Send noise, light, and temperature data to a PPC, via the
network root.

Have motes respond to send audio samples and buzz
commands.

Play back or display this data on PPCs to verify the that the
system functions.
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Outline
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Introduction
Role of real-time OS in embedded system
Related work and contributions

Examples of energy optimization
Simulation infrastructure

Results

Conclusions
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Introduction
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Real-Time Operating Systems are often used in embedded
systems.

They simplify use of hardware, ease management of multiple
tasks, and adhere to real-time constraints.

Power is important in many embedded systems with RTOSs.
RTOSs can consume significant amount of power.

They are re-used in many embedded systems.

They impact power consumed by application software.

RTOS power effects influence system-level design.
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Introduction
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* Real Time Operating Systems important part of embedded
systems

— Abstraction of HW
— Resource management

— Meet real-time constraints
* Used in several low-power embedded systems

* Need for RTOS power analysis
— Significant power consumption
— Impacts application software power

— Re-used across several applications
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Role of RTOS in embedded system
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Applications

wree T =
encoding
Communication m Memory
Conmricsir - R
Basic
10

RTOS
services

- ~
Micro-

browser

Other hardware

Network interface

composer
Hardware
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Related work and contributions
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Instruction level power analysis
V. Tiwari, S. Malik, A. Wolfe, and T.C. Lee, Int. Conf. VLSI
Design, 1996

System-level power simulation
Y. Li and J. Henkel, Design Automation Conf., 1998

MicroC/OS-Il: J.J. Labrosse, R & D Books, Lawrence, KS, 1998

Our work
— First step towards detailed power analysis of RTOS

— Applications: low-power RTOS, energy-efficient software
architecture, incorporate RTOS effects in system design
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Simulated embedded system
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Fujitsu
SPARCIite 86832

On-chip cache

IBM
0118160PT3-60

DRAM

IBM J A
0118160PT3-60
DRAM
Interrupts
Other _ASICs
and peripherals
Processor
bus
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Easy to add new
devices
Cycle-accurate model
Fujitsu board support
library used in model
uC/OS-1l RTOS used



Single task network interface
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Compute Procure Transfer Release
Get packet P Ethernet Ethernet
checksum packet
controller controller

Checksum computation
and output

Procuring Ethernet controller has high energy cost
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TCP example
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Checksum
computation

Get packet
Buffer
management
Compute

checksum

Procure Release
Get packet Compute Ethernet TR Ethernet
checksum packet
controller controller

Procure e Release
Ethernet packets Ethernet
controller controller

Straight-forward implementation Multi-task implementation

Checksum computation
and output
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Multi-tasking network interface
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Checksum
computation

Buffer
management

Procure Transfer Release
Ethernet Ethernet
packets
controller controller

RTOS power analysis used for process re-organization to reduce
energy
21% reduction in energy consumption. Similar power consumption.
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ABS example

Sense speed and
pedal conditions
|v

l

Compute
acceleration

Timer
transition?

Actuate brake
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ABS example timing

Brake
pedal

ABS
process

Wheel
sensor

Brake
action

_H__

Time
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Straight-forward ABS implementation
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Brake
Sense speed and pedal

pedal conditions

ABS
rocess
transition? Compute P I_l_l_l_l_l_l_l_l_l_l

Timer
acceleration

Wheel
sensor

Brake decision

Brake
action

== Actuate brake

» |
|
'
| actuat rake
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Periodically triggered ABS

Sense speed and
pedal conditions
|v

l

Compute
acceleration

Timer
transition?

Actuate brake
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Periodically triggered ABS timing

ABS
process

Wheel : =
sensor -
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Selectively triggered ABS

Pedal Y Sense speed and
plase pedal conditions

Compute

lN

Brake decision

-
sl e Actuate brake

transition?
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Selectively triggered ABS timing

Brake
pedal

process : 1 P

Wheel

sensor

Brake . : . :
action 58 ¢ .

Time

S

63% reduction in energy and power consumption
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Power-optimized ABS example
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Timer
- Pedal R Sense speed and
Ressst pedal conditions

Brake

pedal

!

Compute
acceleration ABS
‘ process
Wheel

‘ sensor
Timer
transition? < Actuate brake Brake
action
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Infrastructure

Application B==~4 SPARCIite Energy by call
code _|-> compiler tree position for

SPARCIite cache ‘
simulator Cache : @
— controller

SPARCIite ISS model
Instruction-level Energy by call
tree position for
Sy T Bus task B
q imartace
Models for Memory model unit model
peripherals energy model
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Experimental results
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Time
(ms)

Experimental results — time
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Key

------ > Broadcast
- — -3 Price advertisement

—> Sale
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L
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Agent example

Money

Commodity 1
Commodity 2
Commodity 3
Commodity 4




Energy (mJ)

Experimental results
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Energy (mJ)

Experimental results
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Optimization effects

TCP ex-amble: . -' e

e 20.5% energy reduction

* 0.2% power reduction

* RTOS directly accounted for 1% of system energy
ABS example:

* 63% energy reduction

* 63% power reduction

* RTOS directly accounted for 50% of system energy
Mailbox example: RTOS directly accounted for 99% of system energy

Semaphore example: RTOS directly accounted for 98.7% of system
energy
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Partial semaphore hierarchical results
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I
Function Energy/invocation (ud) Energy (%) Time (mg) Ealls
CERET init_tvecs 0.41 0.00 0.00 1
6.41 mJ total init_timer liteled 1.31 0.00 0.00 1
2.02 % 5.51 mJ total
1.74 %
startup do_main 887.44 0.28 2.18 1
0.90 mJ total save_data 1.56 0.00 0.00 1
0.28 % init_data 1.31 0.00 0.00 1
Init_bss 0.88 0.00 0.00 1
cache_on 2.72 0.00 0.01 1
Task win_unf_trap 1.90 1.20 9.73 1999
155.18 mJ total _OSDisablelnt 0.29 0.09 0.78 1000
48.88 % -OSEnablelnt 0.32 0.10 0.89 1000
sparcsim_terminate 0.75 0.00 0.00 1
OSSemPend win_unf_trap 2.48 0.78 6.33 999
31.18 mJ total _OSDisablelnt 0.29 0.18 1.59 1999
9.82 % _OSEnablelnt 0.29 0.18 1.59 1999
OSEvent laskWait 3.76 1.18 9.22 999
OSSched 19.07 6.00 47.97 999
OSSemPost _OSDisablelnt 0.29 0.09 0.78 1000
2.90 mJ total -OSEnablelnt 0.29 0.09 0.78 1000
0.91 %
OSTimeGet _OSDisablelnt 0.27 0.08 0.70 1000
1.43 mJ total -OSEnablelnt 0.29 0.09 0.78 1000
0.45 %
CPUlnit BSPInit 1.09 0.00 0.00 1
0.09 mJ total exceptionHandler 4.77 0.02 0.17 15
0.083 %
printf win_unf_trap 2.05 0.65 5.06 1000
112.90 mJ total viprintf 108.89 34.30 258.53 1000
35.56 %
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Energy per invocation for uC/OS-I1l services
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Service

OSEventTaskWait
OSEventWaitListInit
OSInit
OSMboxCreate
OSMboxPend
OSMboxPost
OSMemCreate
OSMemGet
OSMemInit
OSMemPut
0SQInit
0OSSched
O0SSemCreate
0SSemPend
etc.
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energy (uJ)

7.98
20.43
1727.70
27.51
7.07
5.82
19.40
6.64
27.41
6.38
20.10
6.96
27.87
6.54
etc.

|U||n|mum |U|aX|mum

energy (uJ)

OSEventTaskRdy 18.02 20.03

9.05
21.16
1823.26
28.82
82.91
84.55
19.75
8.22
27.47
7.91
20.93
52.34
29.04
/3.64
etc.




Conclusions
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* RTOS can significantly impact power
 RTOS power analysis can improve application software design

* Applications
— Low-power RTOS design
— Energy-efficient software architecture

— Consider RTOS effects during system design
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Impact of modern architectural features
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* Memory hierarchy

* Bus protocols ISA vs. PCI
* Pipelining

* Superscalar execution

* SIMD

e VLIW
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Summary

o - - — e

* Labs
e Simulation of real-time operating systems

* Impact of modern architectural features
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