Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science
Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda

Office: L477 Tech 338, 1890 Maple Ave.

=k dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu
Phone: 467—-2298 467-7859

Webpage: http://ziyang.ece.northwestern.edu/EXTERNAL/realtime

Homework index

1 Reading assignment
2 Labsix L

29
32

Goals for lecture

- - il — —

Lab four

Example scheduling algorithm design problem

— Will initially focus on static scheduling
Real-time operating systems

Comparison of on-line and off-line scheduling code

Lab four

A - = _— e

e Talk with Promi SD101
e Sample sound at 3kHz

* Multihop

Example problem: Static scheduling

- - = - B —

What is an FPGA?

Why should real-time systems designers care about them?
Multiprocessor static scheduling

No preemption

No overhead for subsequent execution of tasks of same type
High cost to change task type

Scheduling algorithm?

Problem: Uniprocessor independent task
scheduling

- - = - = e ——

* Problem
— Independent tasks
— Each has a period = hard deadline

— Zero-cost preemption

e How to solve?

Rate monotonic scheduling

- e e ———

Main idea

* 1973, Liu and Layland derived optimal scheduling algorithm(s) for
this problem

Schedule the job with the smallest period (period = deadline) first

Analyzed worst-case behavior on any task set of size n

Found utilization bound: U (n) =n- (2'/" — 1)

0.828 atn =2

Asn — o, U(n) — log2 = 0.693

Result: For any problem instance, if a valid schedule is possible,
the processor need never spend more than 71% of its time idle

7

Optimality and utilization for limited case

- — —

* Simply periodic: All task periods are integer multiples of all lesser
task periods

In this case, RMS/DMS optimal with utilization 1

However, this case rare in practice

Remains feasible, with decreased utilization bound, for in-phase
tasks with arbitrary periods

Rate monotonic scheduling

- e e ———

Constrained problem definition
Over-allocation often results

However, in practice utilization of 85%—90% common

— Lose guarantee

If phases known, can prove by generating instance

Critical instants

- - = - e ——

Main idea:

A job’s critical instant a time at which all possible concurrent
higher-priority jobs are also simultaneously released

Useful because it implies latest finish time

10

Proof sketch for RMS utilization bound

- e e ———

* Consider case in which no period exceeds twice the shortest
period

* Find a pathological case
— Utilization of 1 for some duration

— Any decrease in period/deadline of longest-period task will
cause deadline violations

— Any increase in execution time will cause deadline violations

11

RMS worst-case utilization

- - il — —

* In-phase
* Vist 1<k<n—1: €k = Dk+1 — Dk

n—1
* én an—Z'Zkzlek

12

Proof sketch for RMS utilization bound

- e e ———

See if there is a way to increase utilization while meeting all
deadlines

Increase execution time of high-priority task
- ¢;=piy1 —pitE€=¢;+E
Must compensate by decreasing another execution time

This always results in decreased utilization

— e, =ep—¢€
— U — :e_;_|_i 4 er __ € £
pi ' Pk pPi Pk Pi Dk

— Note that p; < py — U’ > U

13

Proof sketch for RMS utilization bound
e Same true if execution time of high-priority task reduced

* e =pit1—pi—¢€

* |n this case, must increase other e or leave idle for 2 - €

* ¢ =ex+2¢

YN
l

« Again, py <2 —U">U

* Sum over execution time/period ratios

14

Proof sketch for RMS utilization bound

Get utilization as a function of adjacent task ratios

Substitute execution times into) ;' %

Find minimum

Extend to cases in which p,, > 2 p;

15

Notes on RMS
Other abbreviations exist (RMA)
DMS better than or equal RMA when deadline # period

Why not use slack-based?

What happens if resources are under-allocated and a deadline is
missed?

16

Essential features of RTOSs

- = - _— & - - i

* Provides real-time scheduling algorithms or primatives

 Bounded execution time for OS services
— Usually implies preemptive kernel

— E.g., linux can spend milliseconds handling interrupts,
especially disk access

17

Threads
* Threads vs. processes: Shared vs. unshared resources

e OS impact: Windows vs. Linux

* Hardware impact: MMU

18

Threads vs. processes

il - _ -

Threads: Low context switch overhead

Threads: Sometimes the only real option, depending on
hardware

Processes: Safer, when hardware provides support

Processes: Can have better performance when IPC limited

19

Software implementation of schedulers

- — —

* TinyOS

* Light-weight threading executive
¢ uC/OS-Il

* Linux

e Static list scheduler

20

TinyOS

e Most behavior event-driven
* High rate — Livelock

e Research schedulers exist

21

BD threads
Brian Dean: Microcontroller hacker
Simple priority-based thread scheduling executive
Tiny footprint (fine for AVR)

Low overhead

No MMU requirements

22

uG/OS-l

e Similar to BD threads
 More flexible

* Bigger footprint

23

Old linux scheduler

- - il — —

* Single run queue
* O (n) scheduling operation

* Allows dynamic goodness function

24

O (1) scheduler in Linux 2.6

- - e e ———

Written by Ingo Molnar

Splits run queue into two queues prioritized by goodness

Requires static goodness function

— No reliance on running process

Compatible with preemptible kernel

25

Real-time linux

- = - _— & - i

* Run linux as process under real-time executive
* Complicated programming model

* RTAI (Real-Time Application Interface) attempts to simplify

— Colleagues still have problems at > 18 kHz control period

26

Real-time operating systems

- _— —

Embedded vs. real-time
Dynamic memory allocation
Schedulers: General-purpose vs. real-time

Timers and clocks: Relationship with HW

27

Summary

A - = _— e

 Static scheduling
* Example of utilization bound proof

* Introduction to real-time operating systems

28

Reading assignment

* Read Chapter 12 in J. W. S. Liu, Real-Time Systems.
Prentice-Hall, Englewood Cliffs, NJ, 2000

* Read K. Ghosh, B. Mukherjee, and K. Schwan, “A survey of
real-time operating systems,” tech. rep., College of Computing,
Georgia Institute of Technology, Feb. 1994

28

Goals for lecture

- - il — —

Lab four?
Lab six
Simulation of real-time operating systems

Impact of modern architectural features

30

Lab four

- - = - e ——

* Please email or hand in the write-up for lab assignment four

* Problems? See me.

— Will need everything from lab four working for lab six

31

Lab six

Develop priority-based cooperative scheduler for TinyOS that
keeps track of the percentage of idle time.

Develop a tree routing algorithm for the sensor network.

Send noise, light, and temperature data to a PPC, via the
network root.

Have motes respond to send audio samples and buzz
commands.

Play back or display this data on PPCs to verify the that the
system functions.

32

Outline

- _ — o

Introduction
Role of real-time OS in embedded system
Related work and contributions

Examples of energy optimization
Simulation infrastructure

Results

Conclusions

33

Introduction

- = - _— & - i

Real-Time Operating Systems are often used in embedded
systems.

They simplify use of hardware, ease management of multiple
tasks, and adhere to real-time constraints.

Power is important in many embedded systems with RTOSs.
RTOSs can consume significant amount of power.

They are re-used in many embedded systems.

They impact power consumed by application software.

RTOS power effects influence system-level design.

34

Introduction

- = - _— & e

* Real Time Operating Systems important part of embedded
systems

— Abstraction of HW
— Resource management

— Meet real-time constraints
* Used in several low-power embedded systems

* Need for RTOS power analysis
— Significant power consumption
— Impacts application software power

— Re-used across several applications

35

Role of RTOS in embedded system

— e — —— e EE N =1 i, if— -

Applications

wree T =
encoding
Communication m Memory
Conmricsir - R
Basic
10

RTOS
services

- ~
Micro-

browser

Other hardware

Network interface

composer
Hardware

36

Related work and contributions

- - s

Instruction level power analysis
V. Tiwari, S. Malik, A. Wolfe, and T.C. Lee, Int. Conf. VLSI
Design, 1996

System-level power simulation
Y. Li and J. Henkel, Design Automation Conf., 1998

MicroC/OS-Il: J.J. Labrosse, R & D Books, Lawrence, KS, 1998

Our work
— First step towards detailed power analysis of RTOS

— Applications: low-power RTOS, energy-efficient software
architecture, incorporate RTOS effects in system design

37

Simulated embedded system

- - — =S _— e

Fujitsu
SPARCIite 86832

On-chip cache

IBM
0118160PT3-60

DRAM

IBM J A
0118160PT3-60
DRAM
Interrupts
Other _ASICs
and peripherals
Processor
bus

38

—

-

Easy to add new
devices
Cycle-accurate model
Fujitsu board support
library used in model
uC/OS-1l RTOS used

Single task network interface

— - — — —— — — -

Compute Procure Transfer Release
Get packet P Ethernet Ethernet
checksum packet
controller controller

Checksum computation
and output

Procuring Ethernet controller has high energy cost

39

TCP example

e s — — “—— = W i .

Checksum
computation

Get packet
Buffer
management
Compute

checksum

Procure Release
Get packet Compute Ethernet TR Ethernet
checksum packet
controller controller

Procure e Release
Ethernet packets Ethernet
controller controller

Straight-forward implementation Multi-task implementation

Checksum computation
and output

40

Multi-tasking network interface

— e — —— e EE N =1 i, if— -

Checksum
computation

Buffer
management

Procure Transfer Release
Ethernet Ethernet
packets
controller controller

RTOS power analysis used for process re-organization to reduce
energy
21% reduction in energy consumption. Similar power consumption.

41

ABS example

Sense speed and
pedal conditions
|v

l

Compute
acceleration

Timer
transition?

Actuate brake

42

ABS example timing

Brake
pedal

ABS
process

Wheel
sensor

Brake
action

_H__

Time

43

Straight-forward ABS implementation

. - - s — -
Brake
Sense speed and pedal

pedal conditions

ABS
rocess
transition? Compute P I_l_l_l_l_l_l_l_l_l_l

Timer
acceleration

Wheel
sensor

Brake decision

Brake
action

== Actuate brake

» |
|
'
| actuat rake

44

Periodically triggered ABS

Sense speed and
pedal conditions
|v

l

Compute
acceleration

Timer
transition?

Actuate brake

45

Periodically triggered ABS timing

ABS
process

Wheel : =
sensor -

46

Selectively triggered ABS

Pedal Y Sense speed and
plase pedal conditions

Compute

lN

Brake decision

-
sl e Actuate brake

transition?

47

Selectively triggered ABS timing

Brake
pedal

process : 1 P

Wheel

sensor

Brake . : . :
action 58 ¢ .

Time

S

63% reduction in energy and power consumption

48

Power-optimized ABS example

= p— - - —— = e W i, -

Timer
- Pedal R Sense speed and
Ressst pedal conditions

Brake

pedal

!

Compute
acceleration ABS
‘ process
Wheel

‘ sensor
Timer
transition? < Actuate brake Brake
action

49

Infrastructure

Application B==~4 SPARCIite Energy by call
code _|-> compiler tree position for

SPARCIite cache ‘
simulator Cache : @
— controller

SPARCIite ISS model
Instruction-level Energy by call
tree position for
Sy T Bus task B
q imartace
Models for Memory model unit model
peripherals energy model

50

Experimental results

N — - — e i

Application
1100 _ I Floating-point
Initialization
1000 | o 395 .
900 _ 100 i 300 | m— B Input/output
800 | 90] 275 | Interrupt
Energy o] - o Il Mailbox
(mJ) 600 . 70 | 200 | I Memory
500 _ 60 _ 175 _ Misc.
400 . 50 . :gg . Scheduling
300 | :g 1 100 : S Semaphore
I 75 . X Slee
100 | 10 | = = ynchronization
0. Uy 0] === Task control
My, S,
al/b 6[77
(o) /o)
X hor,

51

Time
(ms)

Experimental results — time

- e T— T

52

800 _

750 _
700 _
650 |
600 .
550 |
500 |
450 |
400 |
350 |
300 |
250 |
200 |
150 |
100 |

Application
I Floating-point
B Initialization
B Input/output

Interrupt
I Mailbox
B Memory

Misc.

Scheduling

== Semaphore

== Sleep
== Synchronization

Task control

——

Key

------ > Broadcast
- — -3 Price advertisement

—> Sale

-

L

53

Agent example

Money

Commodity 1
Commodity 2
Commodity 3
Commodity 4

Energy (mJ)

Experimental results

— - — - i — il
8000 _
10500 _ 7500 _|
e
9000 _ 6500 _ Application
8500 _|

6000 _| Floating—point
8000 _| []

Time (ms)

7500 _| 5500 _ B Initialization
7000 _| 5000 _ B Input/output
6500 _| 4500 _ Interrupt
6000 _| Matlh
5500 _ 4000 _ [l Mailbox
5000 _| 3500 _| B Memory
4500 _|)
4000 _| 3000 _| Misc. .
3500 _] 2500 _| Scheduling
)

3000 _| 2000 _| & Semaphore
o S Sleep
2000 _ 1500 _| \ hronizati
1500 _ 1000 _| Synchronization

1 |

lggg : 500 _ Task control
0_ 0_]
2 R} p 3
€:) (b)

54

Energy (mJ)

Experimental results

3750 _
3500 _|
3250 _|
3000 _|
2750 _|
2500 _|
2250 _|
2000 _|
1750 _|
1500 _
1250 _|
1000 _|

750 _|

500 _|

P |

. —

Agent

K

€:))

-I
2. %

%
@

et

Ethernet

55

Application
I Floating—point
[Initialization
[Input/output
Interrupt
Il Mailbox
I Memory
Misc.
Scheduling
=S Semaphore
SS Sleep
Synchronization
Task control

Optimization effects

TCP ex-amble: . -' e

e 20.5% energy reduction

* 0.2% power reduction

* RTOS directly accounted for 1% of system energy
ABS example:

* 63% energy reduction

* 63% power reduction

* RTOS directly accounted for 50% of system energy
Mailbox example: RTOS directly accounted for 99% of system energy

Semaphore example: RTOS directly accounted for 98.7% of system
energy

56

Partial semaphore hierarchical results

S L

.

I
Function Energy/invocation (ud) Energy (%) Time (mg) Ealls
CERET init_tvecs 0.41 0.00 0.00 1
6.41 mJ total init_timer liteled 1.31 0.00 0.00 1
2.02 % 5.51 mJ total
1.74 %
startup do_main 887.44 0.28 2.18 1
0.90 mJ total save_data 1.56 0.00 0.00 1
0.28 % init_data 1.31 0.00 0.00 1
Init_bss 0.88 0.00 0.00 1
cache_on 2.72 0.00 0.01 1
Task win_unf_trap 1.90 1.20 9.73 1999
155.18 mJ total _OSDisablelnt 0.29 0.09 0.78 1000
48.88 % -OSEnablelnt 0.32 0.10 0.89 1000
sparcsim_terminate 0.75 0.00 0.00 1
OSSemPend win_unf_trap 2.48 0.78 6.33 999
31.18 mJ total _OSDisablelnt 0.29 0.18 1.59 1999
9.82 % _OSEnablelnt 0.29 0.18 1.59 1999
OSEvent laskWait 3.76 1.18 9.22 999
OSSched 19.07 6.00 47.97 999
OSSemPost _OSDisablelnt 0.29 0.09 0.78 1000
2.90 mJ total -OSEnablelnt 0.29 0.09 0.78 1000
0.91 %
OSTimeGet _OSDisablelnt 0.27 0.08 0.70 1000
1.43 mJ total -OSEnablelnt 0.29 0.09 0.78 1000
0.45 %
CPUlnit BSPInit 1.09 0.00 0.00 1
0.09 mJ total exceptionHandler 4.77 0.02 0.17 15
0.083 %
printf win_unf_trap 2.05 0.65 5.06 1000
112.90 mJ total viprintf 108.89 34.30 258.53 1000
35.56 %

57

Energy per invocation for uC/OS-I1l services

- _—

Service

OSEventTaskWait
OSEventWaitListInit
OSInit
OSMboxCreate
OSMboxPend
OSMboxPost
OSMemCreate
OSMemGet
OSMemInit
OSMemPut
0SQInit
0OSSched
O0SSemCreate
0SSemPend
etc.

58

.

energy (uJ)

7.98
20.43
1727.70
27.51
7.07
5.82
19.40
6.64
27.41
6.38
20.10
6.96
27.87
6.54
etc.

|U||n|mum |U|aX|mum

energy (uJ)

OSEventTaskRdy 18.02 20.03

9.05
21.16
1823.26
28.82
82.91
84.55
19.75
8.22
27.47
7.91
20.93
52.34
29.04
/3.64
etc.

Conclusions

- - = - e ——

* RTOS can significantly impact power
 RTOS power analysis can improve application software design

* Applications
— Low-power RTOS design
— Energy-efficient software architecture

— Consider RTOS effects during system design

99

Impact of modern architectural features

— .

* Memory hierarchy

* Bus protocols ISA vs. PCI
* Pipelining

* Superscalar execution

* SIMD

e VLIW

60

Summary

o - - — e

* Labs
e Simulation of real-time operating systems

* Impact of modern architectural features

61

